Phys 944: Quantum Mechanics II                                                                                                                                                                            merzbacher quantum mechanics
 
 
Fall 2007

MW 14:10-15:30,    Parsons 131

Instructor:   Silas Beane

Office:    Nesmith 307                   Phone:   603-862-2720

email:   silas@physics.unh.edu      web:   http://nuclear.unh.edu/~silas/                                                                                                                                                   
Office hours:   W Th  12:00-1:00pm



Course information

Textbook

There is no main textbook for this course.  We will use a variety of Quantum Mechanics texts as resources, depending on the topic covered.


Email and Office Hours

I strongly encourage students to communicate with me by email for bureaucratic issues. At times, I'll communicate with the class by email.
Please, no physics questions via email!

If necessary, you may visit me outside of office hours but please do not be offended if I'm unable to speak with you immediately.

Homeworks, Exams and Grades

The grades for this course will be based on homework (50%), an in-class midterm exam (25%) and a final exam  (25%) that may be take-home or
may be in-class, depending on the overall class performance on the mid-term. The final exam will be comprehensive.

You will have two weeks to complete each homework set; there will be roughly seven homework assignments.  The homeworks will be long and difficult. If you start working on an
assignment  the day before it's due, you will not finish it in time. Late homeworks will not be accepted unless there is a compelling rationale.

I encourage you to work on the homework in groups. However, you must list your collaborators on your manuscript. I take this very seriously; a failure to acknowledge collaborators
may result in a loss of all credit for the assignment. There is no collaboration permitted on the exams.

I believe that most of what you'll get out of this class will be from the homeworks.  Several of the assigned problems will involve numerical simulation.


Topics


Angular Momentum

Time-dependent Perturbation Theory

Scattering Theory

N particle Systems




Some useful texts (on reserve in the library)

J.J. Sakurai, Modern Quantum Mechanics

C. Cohen-Tannoudji, B. Diu and F. Laloe, Quantum Mechanics 

L.D. Landau and E.M. Lifschitz, Quantum Mechanics (Non-relativistic theory)

E. Merzbacher, Quantum Mechanics

R. Shankar, Principles of Quantum Mechanics

A. Messiah, Quantum Mechanics

A. Das and  A.C. Melissinos: Quantum Mechanics: A Modern Introduction

A. Bohm: Quantum Mechanics: Foundations and Applications

A.S. Davydov: Quantum Mechanics

W.K. Tung    Group Theory in Physics        (come see me if this isn't in library)


Calendar  (topics covered & homework)


Week  Monday  Wednesday  Friday  HW  
(due on Fridays)
1.      9/3

Introduction
Rotations in 2-d
  SO(2), its generator, and its representations

HW1
(ps,pdf)
2.     9/10
Silas in Aachen (J.Dawson covering)

Rotations in 3-d
  Axis and angle parametrization
  3-d Rotations in QM
                                                                                                                                                                                                                       
John Dawson's
notes
(pdf)
3.     9/17

Rotations in 2-d (continued)
   Angular momentum in 2-d
Rotations in 3-d (continued)
   Classical 3-d rotations
   Algebra and invariant tensors of SO(3)
   generators and transformation properties

HW2
(ps,pdf)

HW1 due
4.     9/24
Silas at JLab (no class Monday; meet Wednesday and Friday)

Rotations in 3-d (continued)
   More on axis and angles
   Euler angles
SO(3) in QM
  eigenvalues and eigenvectors


 
5.     10/1

SO(3) in QM (continued)
  Wigner D functions
   Orbital angular momentum
   Spherical harmonics

HW3
(pdf)

HW2 due
6.     10/8

SO(3) in QM (continued)
   Spherical harmonics (continued)
   Addition of angular momenta
    (Vector and) Tensor operators



7.
          10/15

SO(3) in QM (continued)
    W-E theorem
Time-dependent Perturbation Theory
    review of R-S time-ind. PT

EXAM WEDNESDAY

HW4
(pdf)

HW3 due
8.     10/22

Time-dependent Perturbation Theory
      Formalism
      Coulomb excitations


9.     10/29

Time-dependent Perturbation Theory (continued)
      Coulomb excitations
      Atom in a radiation field
          The photoelectric effect

HW5
(pdf)

HW4 due

10.
         11/5

Time-dependent Perturbation Theory (continued)
           The photoelectric effect (continued)
        Fermi's Golden rule
Scattering Theory
        The S-matrix in 1-d


 11.    
              11/12 

Scattering Theory (cont)
        The scattering cross section
         Green's functions in scattering theory
         Scattering of a wave packet
         The Born approximation

HW6
(pdf)

HW5 due

12.
         11/19

Scattering Theory (cont)
          Central potentials
          Scattering amplitude and partial waves
          Phase shifts
          S matrix and optical theorem



13.
         11/26

Scattering Theory (cont)
          The transition matrix and the S matrix
          The T matrix and relation to scattering amplitude
           Lipmann-Schwinger equation

HW7
(pdf)

HW6 due

14.
          12/3

Scattering Theory (cont)
           The nth Born approximation
N particle systems
            Direct product spaces for distinguishable particles
            Entangled states
            Identical particles
                    State vectors and permutation symmetry
                         BE and FD statistics
                         Two electron system
                     Creation/annihilation operators
                          operator algebra





15.
            12/10
                     Creation/annihilation operators (cont)
                           operator algebra (cont)
                           BE and FD statistics

HW7 due

FINAL EXAM
(pdf)

Final exam due
12/20


 
The outline above is subject to change as the semester progresses.