1. This problem is about the 2-dimensional isotropic harmonic oscillator. The Hamiltonian is

$$
\begin{equation*}
\hat{H}=\left(\hat{p}_{1}^{2}+\hat{p}_{2}^{2}\right) / 2 m+k\left(\hat{q}_{1}^{2}+\hat{q}_{2}^{2}\right) / 2, \tag{1}
\end{equation*}
$$

where the p 's and q 's obey the usual commutation relations.
(a) Construct \hat{L}_{3} and verify that $\left[\hat{H}, \hat{L}_{3}\right]=0$.
(b) Consider the operators:

$$
\begin{align*}
& \hat{F}_{1}=\frac{1}{2}\left(\frac{1}{\sqrt{m k}} \hat{p}_{1} \hat{p}_{2}+\sqrt{m k} \hat{q}_{1} \hat{q}_{2}\right) \\
& \hat{F}_{2}=\frac{1}{2}\left(\hat{q}_{1} \hat{p}_{2}-\hat{q}_{2} \hat{p}_{1}\right) \\
& \hat{F}_{3}=\frac{1}{4}\left(\frac{1}{\sqrt{m k}}\left(\hat{p}_{1}^{2}-\hat{p}_{2}^{2}\right)+\sqrt{m k}\left(\hat{q}_{1}^{2}-\hat{q}_{2}^{2}\right)\right) . \tag{2}
\end{align*}
$$

Verify that $\left[\hat{H}, \hat{F}_{i}\right]=0$. What is the physical significance of these operators? How is \hat{F}_{2} related to \hat{L}_{3} ?
(c) Verify that the F_{i} satisfy the algebra of $S O(3)$:

$$
\begin{equation*}
\left[\hat{F}_{i}, \hat{F}_{j}\right]=i \hbar \epsilon_{i j k} \hat{F}_{k} \tag{3}
\end{equation*}
$$

(d) How can this be, given that the harmonic oscillator lives in 2 dimensions??
2. This problem is about Schwinger's oscillator model of angular momentum, which makes use of the observation made in the previous problem. The $S O(3)$ rotation group has both single-valued and double-valued representations, corresponding to integral and half-integral values of j, respectively. Both kinds of representations become single valued in terms of the $\operatorname{Spin}(3)$ group (the double cover of $S O(3))$; $\operatorname{Spin}(3)$ is isomorphic to $S U(2)$. The $S U(2)$ picture of the spin group is more convenient for deriving the explicit rotation matrices, $\mathcal{D}_{m, m^{\prime}}^{(j)}(\phi, \vec{n})$ for all representations (j). In this problem, we will construct the $\mathcal{D}_{m, m^{\prime}}^{(j)}$ matrix elements as explicit polynomials of the matrix elements $U_{\alpha \beta}$ of the $S U(2)$ matrix $U(\alpha, \vec{n}) \equiv \exp \left(-i \frac{\alpha}{2} \vec{n} \cdot \vec{\sigma}\right)$.
Our starting point is a system of two independent harmonic oscillators whose creation and annihilation operators $\hat{a}_{+}^{\dagger}, \hat{a}_{-}^{\dagger}, \hat{a}_{+}, \hat{a}_{-}$obey the canonical commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0=\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right], \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta}, \quad \alpha, \beta=+,- \tag{4}
\end{equation*}
$$

and a trio of model angular momentum operators

$$
\begin{equation*}
\hat{J}_{i}=\frac{\hbar}{2} \sum_{\alpha, \beta} \sigma_{i, \alpha \beta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta} \tag{5}
\end{equation*}
$$

where $\sigma_{i, \alpha \beta}$ are matrix elements of the Pauli matrices σ_{i}.
(a) Compute the commutators $\left[\hat{J}_{i}, \hat{a}_{\alpha}\right]$ and $\left[\hat{J}_{i}, \hat{a}_{\alpha}^{\dagger}\right]$.
(b) Verify that $\left[\hat{J}_{i}, \hat{J}_{j}\right]=i \hbar \epsilon_{i j k} \hat{J}_{k}$; it is this relation that allows us to treat the \hat{J}_{i} as model angular momenta. (Hint: you've already shown this in problem 1.)
(c) Prove that

$$
\begin{equation*}
\hat{J}_{i} \hat{J}_{i}=\hbar^{2} \frac{\hat{N}}{2}\left(\frac{\hat{N}}{2}+1\right), \quad \text { where } \quad \hat{N} \equiv \hat{a}_{+}^{\dagger} \hat{a}_{+}+\hat{a}_{-}^{\dagger} \hat{a}_{-} . \tag{6}
\end{equation*}
$$

(Hint: first express \hat{J}_{z} and $\hat{J}_{ \pm}$explicitly in terms of $\hat{a}_{ \pm}$and $\hat{a}_{ \pm}^{\dagger}$; then compute $\left.\hat{J}_{i} \hat{J}_{i}=\hat{J}_{z}^{2}+\frac{1}{2}\left\{\hat{J}_{+}, \hat{J}_{-}\right\}.\right)$
(d) Show that for this model the states with definite values of j and m are precisely the states with definite numbers of oscillatorial quanta n_{+}and n_{-}. Specifically,

$$
\begin{equation*}
|j, m\rangle=\left|n_{+}=j+m, n_{-}=j-m\right\rangle=((j+m)!(j-m)!)^{-1 / 2}\left(\hat{a}_{+}^{\dagger}\right)^{j+m}\left(\hat{a}_{-}^{\dagger}\right)^{j-m}|0\rangle \tag{7}
\end{equation*}
$$

where $|0\rangle$ is the ground state of the two-oscillator system.
(e) Now suppose that for some unitary operator \hat{V},

$$
\begin{equation*}
\hat{V}|0\rangle=|0\rangle \quad \text { and } \quad \hat{V} \hat{a}_{\alpha}^{\dagger} \hat{V}^{\dagger}=\sum_{\beta} \hat{a}_{\beta}^{\dagger} U_{\beta \alpha} \tag{8}
\end{equation*}
$$

where $U_{\beta \alpha}$ is an $S U(2)$ matrix. Show that the relations, eq. (8), inevitably lead to

$$
\begin{equation*}
\hat{V}|j, m\rangle=\sum_{m^{\prime}}\left|j, m^{\prime}\right\rangle \mathcal{D}_{m^{\prime}, m}^{(j)} \tag{9}
\end{equation*}
$$

and compute the matrix elements $\mathcal{D}_{m^{\prime}, m}^{(j)}$ as polynomials of the matrix elements of U.
Notice that for $j=1 / 2$ the $\mathcal{D}^{(1 / 2)}$ matrix is U. Therefore, this exercise gives us the $\mathcal{D}^{(j)}$ matrices for states of all angular momenta j in terms of the two-by-two matrix for the states of $j=1 / 2$.
(f) Prove the following lemma: For any operator \hat{B} and a finite set of operators $\hat{A}_{1}, \hat{A}_{2}, \ldots, \hat{A}_{N}$ satisfying the commutation relations $\left[\hat{A}_{n}, \hat{B}\right]=\sum_{n^{\prime}} \hat{A}_{n^{\prime}} C_{n^{\prime}, n}$ where $C_{n^{\prime}, n}$ is a finite N-by- N matrix of c-numbers,

$$
\begin{equation*}
\exp (t \hat{B}) \hat{A}_{n} \exp (-t \hat{B})=\sum_{n^{\prime}} \hat{A}_{n^{\prime}}[\exp (t C)]_{n^{\prime}, n} \tag{10}
\end{equation*}
$$

(Hint: differentiate the left hand side of eq. (10) with respect to t and then solve the differential equation.)
(g) Now consider the rotation operators $\hat{R}(\phi, \vec{n})=\exp \left(\frac{\phi}{i \hbar} n_{i} \hat{J}_{i}\right)$ generated by the angular momentum operators, eq. (5). Show that these rotation operators do satisfy eq. (8), and the $S U(2)$ matrix $U_{\alpha \beta}$ happens to be $\left[\exp \left(\frac{\phi}{2 i \hbar} n_{i} \hat{\sigma}_{i}\right)\right]_{\beta \alpha}$.
(h) Finally, explain why the $\mathcal{D}^{(j)}$ matrices that you've computed in this problem would work for any physical system with a well-defined angular momentum, and not just for the Schwinger model of this problem.

