1. This problem is about the Wigner-Eckart theorem, which here we will write as,

$$
\begin{equation*}
\left\langle j^{\prime}, m^{\prime}, \alpha^{\prime}\right| \hat{T}_{\mu}^{(\ell)}|j, m, \alpha\rangle=\left\langle j^{\prime}, \alpha^{\prime}\right|\left|\hat{T}^{(\ell)}\right||j, \alpha\rangle \cdot\left\langle\ell, j ; j^{\prime}, m^{\prime} \mid \ell, j ; \mu, m\right\rangle \tag{1}
\end{equation*}
$$

and its application to matrix elements of vector operators.
(a) Use the Wigner-Eckart theorem to show that for $j^{\prime}=j$ and for any vector operator $\hat{A}_{i}$,

$$
\begin{equation*}
\left\langle j, m^{\prime}, \alpha^{\prime}\right| \hat{A}_{i}|j, m, \alpha\rangle=\left\langle j, \alpha^{\prime}\right|\left|\hat{A}^{(1)}\right||j, \alpha\rangle \cdot \frac{\left\langle j, m^{\prime}\right| \hat{J}_{i}|j, m\rangle}{\langle j|\left|\hat{J}^{(1)} \| j\right\rangle} . \tag{2}
\end{equation*}
$$

(b) Show that the matrix elements of the scalar product $\hat{A}_{i} \hat{J}_{i}$ are related to the reduced matrix elements of $\hat{A}^{(1)}$ via

$$
\begin{equation*}
\left\langle j, m, \alpha^{\prime}\right| \hat{A}_{i} \hat{J}_{i}|j, m, \alpha\rangle=C_{j}\left\langle j, \alpha^{\prime}\right|\left|\hat{A}^{(1)} \| j, \alpha\right\rangle, \tag{3}
\end{equation*}
$$

where the coefficient $C_{j}$ depends only on $j$ and is the same for all vector operators $\hat{A}_{i}$ and all rotationally-invariant quantum numbers $\alpha, \alpha^{\prime}$.
(c) Combine eqs. (2) and (3) and the fact that $\hat{J}_{i}$ is itself a vector operator to prove that

$$
\begin{equation*}
\left\langle j, m^{\prime}, \alpha^{\prime}\right| \hat{A}_{i}|j, m, \alpha\rangle=\frac{1}{\hbar^{2} j(j+1)}\left\langle j, m, \alpha^{\prime}\right| \hat{A}_{j} \hat{J}_{j}|j, m, \alpha\rangle \cdot\left\langle j, m^{\prime}\right| \hat{J}_{i}|j, m\rangle \tag{4}
\end{equation*}
$$

This formula is often called the projection theorem.
(d) The magnetic moment of an electron is $\hat{\mu}_{i}=\frac{-e}{2 M_{e c}}\left(\hat{L}_{i}+\hbar \hat{\sigma}_{i}\right)$. Hence, the magnetic moment of an atom is $\hat{\mu}_{i}=\frac{-e}{2 M_{e} c}\left(\hat{L}_{i}+2 \hat{S}_{i}\right)$, where $\hat{L}_{i}$ is the combined orbital angular momentum of the atom's electrons and $\hat{S}_{i}$ is their combined spin.
The ground states of atoms usually have well-defined values of $\ell_{\text {tot }}$ and $s_{\text {tot }}$ as well as $j_{t o t}$ and $m_{j}$ (the so-called LS coupling). Show that the matrix elements of the magnetic moment between such states are:

$$
\begin{equation*}
\left\langle\ell, s, j, m^{\prime}, \operatorname{rad}\right| \hat{\mu}_{i}|\ell, s, j, m, \operatorname{rad}\rangle=\frac{-e}{2 M_{e} c} g\left\langle j, m^{\prime}\right| \hat{J}_{i}|j, m\rangle, \tag{5}
\end{equation*}
$$

(Lande's formula) and compute the gyromagnetic factor $g$ in terms of $\ell, s$ and $j$.

