1. This problem is about Rabi's formula (see Sakurai, chapter 5 and problem 5.30). Consider a two-level system with $E_{1}<E_{2}$. There is a time-dependent potential that connects the two levels as follows:

$$
\begin{equation*}
V_{11}=V_{22}=0, \quad V_{12}=\gamma e^{i \omega t}, \quad V_{21}=\gamma e^{-i \omega t} \quad(\gamma \text { real }) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{n m} \equiv\langle n| V|m\rangle \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0}|n\rangle=E_{n}|n\rangle \tag{3}
\end{equation*}
$$

At $t=0$, it is known that only the lower level is populated; that is, $c_{1}(0)=1$ and $c_{2}(0)=0$, where

$$
\begin{equation*}
|\tilde{\psi}(t)\rangle=\sum_{n}|n\rangle\langle n||\tilde{\psi}(t)\rangle \equiv \sum_{n} c_{n}(t)|n\rangle . \tag{4}
\end{equation*}
$$

(a) Find $\left|c_{1}(t)\right|^{2}$ and $\left|c_{2}(t)\right|^{2}$ for $t>0$ by solving for the quantum dynamics exactly.
(b) Solve the same problem but now using time-dependent perturbation theory to lowest non-vanishing order. Compare the two approaches for small values of γ. Treat the following two cases separately: (i) ω very different from ω_{12} and (ii) ω very close to ω_{12}.
2. In class we gave a first-order formula for $P_{k \leftarrow s}(t)$, the probability for a system in eigenstate $|s\rangle$ to find itself in a different eigenstate of H_{0} with energy E_{k}. Use this formula, which is valid for $k \neq s$, to calculate the probability that the system remains in state s. Show that the result agrees with $P_{s \leftarrow s}(t)$ calculated from $\langle s| \tilde{T}\left(t, t_{0}\right)|s\rangle$, only if if the second-order terms are retained in the perturbation expansion of this diagonal matrix element.

