
944 QUANTUM MECHANICS - Final Exam Due: Thursday, 20 December, 2007

No collaboration permitted on the final exam. You may freely use the literature, but with
diligent referencing. Do not include rough notes or programming efforts; give only your final
logical development in legible handwriting. Presentation will be a primary factor in grading.

1. This problem is about the Bogoliubov transformation. A common tool in studying
many-body quantum systems is the operator transform. Suppose the particle creation
and annihilation operators a†i and ai can be algebraically expressed in terms of a new
set of operators b†i and bi that obey the same canonical commutation relations:

[bi, bj] = [b†i , b
†
j] = 0 [bi, b

†
j] = δij . (1)

The operators b†i and bi are often said to create/annihilate quasiparticles. The com-
mutation relations, Eq. (1), imply that there is a unique state |B〉 that is annihilated
by all bi; this state is usually referred to as the quasiparticle vacuum, the states of the
form b†i |B〉 are the one-quasiparticle states, etc. Whenever the quasiparticles can be

labeled by the same quantum numbers (e.g. ~k) as the original bosonic particles of the
theory, it is often convenient to make a unitary operator transform:

bi = UaiU
†, b†i = Ua†iU

† , (2)

where U is a unitary operator in the Fock space, usually of the form exp(X) for some

anti-hermitian polynomial X in ai and a†i .

(a) Show that the unitarity of U automatically guarantees that bn and b†n satisfy
Eq. (1), and that the quasiparticle state |B〉 = U |0〉 is the quasiparticle vacuum.

(b) Verify that for X =
∑

n(cna
†
n − c∗nan), exp (X)an exp (−X) = an − cn. This

transform is a c-number shift.

(c) Now let X =
∑

n
1
2
ηn(eiλn(a†n)2 − e−iλn(an)2) (ηn and λn are real). Show that for

this U = exp(X), Eqs. (2) define a diagonal canonical transform:

bi = ai cosh ηi − eiλia†i sinh ηi, b†i = cosh ηia
†
i − e−iλi sinh ηiai . (3)

(d) In order to see the utility of the Bogoliubov transformation, consider the simple
case of one creation/annihilation operator pair with λ = π. We then have

b = a cosh η + a† sinh η . (4)

Use this transformation to obtain the eigenvalues of the following Hamiltonian:

H = h̄ωa†a +
1

2
V (aa+ a†a†) . (5)

Also give the upper limit on V for which this can be done.

(e) Write down the ground state of the Hamiltonian above in terms of the number
states a†a |n〉 = n |n〉.
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2. This problem is about Pauli’s method of solving the hydrogen atom. For all spherically-
symmetric potentials, discrete spectra of bound state energies have (2l+1)-fold degen-
eracy mandated by the SO(3) symmetry — all states |l, m, nr〉 with the same l and nr

but different m have the same energy E(l, nr). For most potentials, there is no further
degeneracy — different combinations of l and nr give different energies. However, there
are two “accidentally degenerate” exceptions to that rule: the spherically-symmetric
harmonic oscillator potential V̂ = 1

2
Mω2r̂2, and the Coulomb potential V̂ = −e2Z/r̂.

In both cases the extra degeneracy is due to non-obvious conservation laws leading
to unexpected enlargement of the symmetry group from the rotations-only SO(3) to
SU(3) in the harmonic case and to SO(3)×SO(3) in the Coulomb case. (We saw this
in problem 1 of HW 3 for the case of the two-dimensional harmonic oscillator where
SO(2) is enlarged to SU(2) ∼ SO(3).)

The unexpected conservation law in the Coulomb case is the Laplace-Runge-Lenz
theorem generalized from classical to quantum mechanics. Classically, we define the
Runge-Lenz vector K as

K ≡ p × L − e2ZMnr (6)

where M is the particle’s mass, L ≡ r × p is its angular momentum and nr ≡ x/r is
a unit vector pointing towards the particle. The Laplace-Runge-Lenz theorem states
that for the Coulomb (Newton) potential, K is a conserved quantity, i.e., does not
change with time.

(a) Prove the classical Laplace-Runge-Lenz theorem.

The definition, Eq. (6) implies that x · K = L2 − e2ZMr and hence r =
L2/(|K| cosφ + e2ZM) where φ is the angle between K and x. Therefore, con-
stancy of the Runge-Lenz vector implies that the classical orbits are conical sec-
tions of eccentricity ε = K/e2ZM ; for ε < 1 the orbit is a closed ellipse whose
pericenter lies in the direction pointed to by K.

In quantum mechanics we define the Runge-Lenz vector operator

K̂ ≡ 1

2
(p̂ × L̂ − L̂ × p̂) − e2ZM x̂r̂−1 . (7)

(b) Verify that each of the component operators K̂i is hermitian and is conserved,
i.e. commutes with the Hamiltonian

Ĥ =
1

2M
p̂2 − e2Zr̂−1 . (8)

To find out the Lie algebra generated by the conserved operators L̂i and K̂i, we
need their commutation relations. We know that [L̂i, L̂j] = ih̄εijkL̂k.

(c) Show that

[ K̂i, L̂j ] = ih̄εijkK̂k [ K̂i, K̂j ] = −2MĤ · ih̄εijkL̂k . (9)

Now consider the subspace of the Hilbert space spanned by the bound states of
the Hamiltonian. On this subspace let us define two vector operators Q̂+ and
Q̂−:

Q̂± ≡ L̂

2
± K̂

√

−8MĤ
. (10)
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(d) Show that the six operators Q̂i
± are hermitian, conserved and obey the SO(3)×

SO(3) commutation relations:

[ Q̂i
+, Q̂

j
+ ] = ih̄εijkQ̂k

+ , [ Q̂i
−, Q̂

j
− ] = ih̄εijkQ̂k

− , [ Q̂i
+, Q̂

j
− ] = 0 . (11)

This SO(3) × SO(3) Lie algebra can be used to describe all bound states as

|q+, m+, q−, m−〉 — simultaneous eigenstates of the Q̂2
± and Q̂z

± operators. How-
ever, this description is somewhat redundant:

(e) Verify that K̂ · L̂ = L̂ · K̂ = 0 and use this fact to show that all bound states

have Q̂2
+ = Q̂2

− and hence q+ = q−.

Therefore we can label the bound states of the Coulomb potential as |q,m+, m−〉;
their energies depend only on q and thus are (2q+1)2-fold degenerate. To compute
these energies:

(f) First, show that

K̂2 = (e2ZM)2 + 2MĤ(L̂2 + h̄2) (12)

(in classical mechanics, K2 = (e2ZM)2 + 2MEL2.)

(g) Second, use Eqs. (10) and (12) to derive

2Q̂2
+ + 2Q̂2

− + h̄2 =
(e2ZM)2

−2MĤ
. (13)

(h) And, finally, use Eqs. (13) to show that the energy of the |q,m+, m−〉 bound state
is

EN = − M(e2Z)2

2h̄2(2q + 1)2
≡ −M(e2Z)2

2h̄2N2
(14)

where N ≡ 2q + 1 is a positive integer, usually called the principal quantum

number of the bound state.

(i) Show that for each value of the principal quantum numberN , the orbital quantum
number l takes all integer values between zero and N − 1.
(Hint: Use L̂ = Q̂+ + Q̂−.)

Also, argue that this means that in terms of l and the radial quantum number
nr, N = l + nr + 1, which implies that the spectrum of N consists of all positive
integers.

3



3. This problem is about time-dependent perturbation theory and its relation with time-
independent perturbation theory.

(a) When the potential V is time-independent, work out 〈s| T̃ (t, 0) |s〉 to second
order and identify ∆(1), ∆(2) and the “wave-function renormalization” Zi in the
expansion of

〈s| T̃ (t, 0) |s〉 = Zi e
−i∆Et/h̄ + rapidly oscillating terms

= Zi − i

h̄

(

∆
(1)
i + ∆

(2)
i

)

t +
1

2!

(

− i

h̄
∆

(1)
i t
)2

+ ϑ(V 3) (15)

and show that they agree with the results from time-independent perturbation
theory, Eqs. (5.1.42), (5.1.44) and (5.1.48b) in Sakurai. Note that this identifi-
cation is done in the t → ∞ limit where rapidly oscillating terms are dropped.
Explain why this identification works.

(b) Now consider a harmonic perturbation V = V0 cosωt. Work out the second-order
energy shift. Does your expression recover the result from time-independent
perturbation theory in the limit ω → 0? Explain your answer.

4. This problem is about scattering in one dimension. The Lippmann-Schwinger formal-
ism can be applied to a one-dimensional transmission-reflection problem with a finite
range potential, V (x) 6= 0 for 0 < |x| < a only.

(a) Suppose that we have an incident wave coming from the left: 〈x|φ〉 = eikx/
√

2π.
How must we handle the singular 1/(E −H0) operator if we are to have a trans-
mitted wave only for x > a and a reflected wave and the original wave for x < −a?
Is the E → E + iε prescription still correct? Obtain an expression for the appro-
priate Green’s function and write an integral equation for 〈x|ψ(+)〉.

(b) Consider the special case of an attractive δ-function potential

V = −
(

γh̄2

2m

)

δ(x), (γ > 0) . (16)

Solve the integral equation to obtain the transmission and reflection amplitudes.

(c) The one-dimensional δ-function potential with γ > 0 admits one and only one
bound state for any value of γ. Show that the transmission and reflection ampli-
tudes you computed have bound-state poles at the expected positions when k is
regarded as a complex variable.
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