No collaboration permitted on the final exam. You may freely use the literature, but with diligent referencing. Do not include rough notes or programming efforts; give only your final logical development in legible handwriting. Presentation will be a primary factor in grading.

1. This problem is about the Bogoliubov transformation. A common tool in studying many-body quantum systems is the operator transform. Suppose the particle creation and annihilation operators a_{i}^{\dagger} and a_{i} can be algebraically expressed in terms of a new set of operators b_{i}^{\dagger} and b_{i} that obey the same canonical commutation relations:

$$
\begin{equation*}
\left[b_{i}, b_{j}\right]=\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right]=0 \quad\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j} \tag{1}
\end{equation*}
$$

The operators b_{i}^{\dagger} and b_{i} are often said to create/annihilate quasiparticles. The commutation relations, Eq. (1), imply that there is a unique state $|B\rangle$ that is annihilated by all b_{i}; this state is usually referred to as the quasiparticle vacuum, the states of the form $b_{i}^{\dagger}|B\rangle$ are the one-quasiparticle states, etc. Whenever the quasiparticles can be labeled by the same quantum numbers (e.g. \vec{k}) as the original bosonic particles of the theory, it is often convenient to make a unitary operator transform:

$$
\begin{equation*}
b_{i}=U a_{i} U^{\dagger}, \quad b_{i}^{\dagger}=U a_{i}^{\dagger} U^{\dagger} \tag{2}
\end{equation*}
$$

where U is a unitary operator in the Fock space, usually of the form $\exp (X)$ for some anti-hermitian polynomial X in a_{i} and a_{i}^{\dagger}.
(a) Show that the unitarity of U automatically guarantees that b_{n} and b_{n}^{\dagger} satisfy Eq. (1), and that the quasiparticle state $|B\rangle=U|0\rangle$ is the quasiparticle vacuum.
(b) Verify that for $X=\sum_{n}\left(c_{n} a_{n}^{\dagger}-c_{n}^{*} a_{n}\right), \exp (X) a_{n} \exp (-X)=a_{n}-c_{n}$. This transform is a c-number shift.
(c) Now let $X=\sum_{n} \frac{1}{2} \eta_{n}\left(e^{i \lambda_{n}}\left(a_{n}^{\dagger}\right)^{2}-e^{-i \lambda_{n}}\left(a_{n}\right)^{2}\right)\left(\eta_{n}\right.$ and λ_{n} are real). Show that for this $U=\exp (X)$, Eqs. (2) define a diagonal canonical transform:

$$
\begin{equation*}
b_{i}=a_{i} \cosh \eta_{i}-e^{i \lambda_{i}} a_{i}^{\dagger} \sinh \eta_{i}, \quad b_{i}^{\dagger}=\cosh \eta_{i} a_{i}^{\dagger}-e^{-i \lambda_{i}} \sinh \eta_{i} a_{i} \tag{3}
\end{equation*}
$$

(d) In order to see the utility of the Bogoliubov transformation, consider the simple case of one creation/annihilation operator pair with $\lambda=\pi$. We then have

$$
\begin{equation*}
b=a \cosh \eta+a^{\dagger} \sinh \eta \tag{4}
\end{equation*}
$$

Use this transformation to obtain the eigenvalues of the following Hamiltonian:

$$
\begin{equation*}
H=\hbar \omega a^{\dagger} a+\frac{1}{2} V\left(a a+a^{\dagger} a^{\dagger}\right) . \tag{5}
\end{equation*}
$$

Also give the upper limit on V for which this can be done.
(e) Write down the ground state of the Hamiltonian above in terms of the number states $a^{\dagger} a|n\rangle=n|n\rangle$.
2. This problem is about Pauli's method of solving the hydrogen atom. For all sphericallysymmetric potentials, discrete spectra of bound state energies have $(2 l+1)$-fold degeneracy mandated by the $S O(3)$ symmetry - all states $\left|l, m, n_{r}\right\rangle$ with the same l and n_{r} but different m have the same energy $E\left(l, n_{r}\right)$. For most potentials, there is no further degeneracy - different combinations of l and n_{r} give different energies. However, there are two "accidentally degenerate" exceptions to that rule: the spherically-symmetric harmonic oscillator potential $\hat{V}=\frac{1}{2} M \omega^{2} \hat{r}^{2}$, and the Coulomb potential $\hat{V}=-e^{2} Z / \hat{r}$. In both cases the extra degeneracy is due to non-obvious conservation laws leading to unexpected enlargement of the symmetry group from the rotations-only $S O(3)$ to $S U(3)$ in the harmonic case and to $S O(3) \times S O(3)$ in the Coulomb case. (We saw this in problem 1 of HW 3 for the case of the two-dimensional harmonic oscillator where $S O(2)$ is enlarged to $S U(2) \sim S O(3)$.)
The unexpected conservation law in the Coulomb case is the Laplace-Runge-Lenz theorem generalized from classical to quantum mechanics. Classically, we define the Runge-Lenz vector \mathbf{K} as

$$
\begin{equation*}
\mathbf{K} \equiv \mathbf{p} \times \mathbf{L}-e^{2} Z M \mathbf{n}_{r} \tag{6}
\end{equation*}
$$

where M is the particle's mass, $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$ is its angular momentum and $\mathbf{n}_{r} \equiv \mathbf{x} / r$ is a unit vector pointing towards the particle. The Laplace-Runge-Lenz theorem states that for the Coulomb (Newton) potential, \mathbf{K} is a conserved quantity, i.e., does not change with time.
(a) Prove the classical Laplace-Runge-Lenz theorem.

The definition, Eq. (6) implies that $\mathbf{x} \cdot \mathbf{K}=\mathbf{L}^{2}-e^{2} Z M r$ and hence $r=$ $\mathbf{L}^{2} /\left(|\mathbf{K}| \cos \phi+e^{2} Z M\right)$ where ϕ is the angle between \mathbf{K} and \mathbf{x}. Therefore, constancy of the Runge-Lenz vector implies that the classical orbits are conical sections of eccentricity $\epsilon=\mathbf{K} / e^{2} Z M$; for $\epsilon<1$ the orbit is a closed ellipse whose pericenter lies in the direction pointed to by \mathbf{K}.
In quantum mechanics we define the Runge-Lenz vector operator

$$
\begin{equation*}
\hat{\mathbf{K}} \equiv \frac{1}{2}(\hat{\mathbf{p}} \times \hat{\mathbf{L}}-\hat{\mathbf{L}} \times \hat{\mathbf{p}})-e^{2} Z M \hat{\mathbf{x}} \hat{r}^{-1} \tag{7}
\end{equation*}
$$

(b) Verify that each of the component operators \hat{K}_{i} is hermitian and is conserved, i.e. commutes with the Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2 M} \hat{\mathbf{p}}^{2}-e^{2} Z \hat{r}^{-1} \tag{8}
\end{equation*}
$$

To find out the Lie algebra generated by the conserved operators \hat{L}_{i} and \hat{K}_{i}, we need their commutation relations. We know that $\left[\hat{L}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{L}_{k}$.
(c) Show that

$$
\begin{equation*}
\left[\hat{K}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{K}_{k} \quad\left[\hat{K}_{i}, \hat{K}_{j}\right]=-2 M \hat{H} \cdot i \hbar \epsilon_{i j k} \hat{L}_{k} \tag{9}
\end{equation*}
$$

Now consider the subspace of the Hilbert space spanned by the bound states of the Hamiltonian. On this subspace let us define two vector operators $\hat{\mathbf{Q}}_{+}$and $\hat{\mathbf{Q}}_{-}$:

$$
\begin{equation*}
\hat{\mathbf{Q}}_{ \pm} \equiv \frac{\hat{\mathbf{L}}}{2} \pm \frac{\hat{\mathbf{K}}}{\sqrt{-8 M \hat{H}}} \tag{10}
\end{equation*}
$$

(d) Show that the six operators $\hat{Q}_{ \pm}^{i}$ are hermitian, conserved and obey the $S O(3) \times$ $S O(3)$ commutation relations:

$$
\begin{equation*}
\left[\hat{Q}_{+}^{i}, \hat{Q}_{+}^{j}\right]=i \hbar \epsilon^{i j k} \hat{Q}_{+}^{k}, \quad\left[\hat{Q}_{-}^{i}, \hat{Q}_{-}^{j}\right]=i \hbar \epsilon^{i j k} \hat{Q}_{-}^{k}, \quad\left[\hat{Q}_{+}^{i}, \hat{Q}_{-}^{j}\right]=0 \tag{11}
\end{equation*}
$$

This $S O(3) \times S O(3)$ Lie algebra can be used to describe all bound states as $\left|q_{+}, m_{+}, q_{-}, m_{-}\right\rangle-$simultaneous eigenstates of the $\hat{\mathbf{Q}}_{ \pm}^{2}$ and $\hat{Q}_{ \pm}^{z}$ operators. However, this description is somewhat redundant:
(e) Verify that $\hat{\mathbf{K}} \cdot \hat{\mathbf{L}}=\hat{\mathbf{L}} \cdot \hat{\mathbf{K}}=0$ and use this fact to show that all bound states have $\hat{\mathbf{Q}}_{+}^{2}=\hat{\mathbf{Q}}_{-}^{2}$ and hence $q_{+}=q_{-}$.
Therefore we can label the bound states of the Coulomb potential as $\left|q, m_{+}, m_{-}\right\rangle$; their energies depend only on q and thus are $(2 q+1)^{2}$-fold degenerate. To compute these energies:
(f) First, show that

$$
\begin{equation*}
\hat{\mathbf{K}}^{2}=\left(e^{2} Z M\right)^{2}+2 M \hat{H}\left(\hat{\mathbf{L}}^{2}+\hbar^{2}\right) \tag{12}
\end{equation*}
$$

(in classical mechanics, $\mathbf{K}^{2}=\left(e^{2} Z M\right)^{2}+2 M E \mathbf{L}^{2}$.)
(g) Second, use Eqs. (10) and (12) to derive

$$
\begin{equation*}
2 \hat{\mathbf{Q}}_{+}^{2}+2 \hat{\mathbf{Q}}_{-}^{2}+\hbar^{2}=\frac{\left(e^{2} Z M\right)^{2}}{-2 M \hat{H}} \tag{13}
\end{equation*}
$$

(h) And, finally, use Eqs. (13) to show that the energy of the $\left|q, m_{+}, m_{-}\right\rangle$bound state is

$$
\begin{equation*}
E_{N}=-\frac{M\left(e^{2} Z\right)^{2}}{2 \hbar^{2}(2 q+1)^{2}} \equiv-\frac{M\left(e^{2} Z\right)^{2}}{2 \hbar^{2} N^{2}} \tag{14}
\end{equation*}
$$

where $N \equiv 2 q+1$ is a positive integer, usually called the principal quantum number of the bound state.
(i) Show that for each value of the principal quantum number N, the orbital quantum number l takes all integer values between zero and $N-1$.
(Hint: Use $\hat{\mathbf{L}}=\hat{\mathbf{Q}}_{+}+\hat{\mathbf{Q}}_{-}$.)
Also, argue that this means that in terms of l and the radial quantum number $n_{r}, N=l+n_{r}+1$, which implies that the spectrum of N consists of all positive integers.
3. This problem is about time-dependent perturbation theory and its relation with timeindependent perturbation theory.
(a) When the potential V is time-independent, work out $\langle s| \tilde{T}(t, 0)|s\rangle$ to second order and identify $\Delta^{(1)}, \Delta^{(2)}$ and the "wave-function renormalization" Z_{i} in the expansion of

$$
\begin{align*}
\langle s| \tilde{T}(t, 0)|s\rangle & =Z_{i} e^{-i \Delta E t / \hbar}+\text { rapidly oscillating terms } \\
& =Z_{i}-\frac{i}{\hbar}\left(\Delta_{i}^{(1)}+\Delta_{i}^{(2)}\right) t+\frac{1}{2!}\left(-\frac{i}{\hbar} \Delta_{i}^{(1)} t\right)^{2}+\vartheta\left(V^{3}\right) \tag{15}
\end{align*}
$$

and show that they agree with the results from time-independent perturbation theory, Eqs. (5.1.42), (5.1.44) and (5.1.48b) in Sakurai. Note that this identification is done in the $t \rightarrow \infty$ limit where rapidly oscillating terms are dropped. Explain why this identification works.
(b) Now consider a harmonic perturbation $V=V_{0} \cos \omega t$. Work out the second-order energy shift. Does your expression recover the result from time-independent perturbation theory in the limit $\omega \rightarrow 0$? Explain your answer.
4. This problem is about scattering in one dimension. The Lippmann-Schwinger formalism can be applied to a one-dimensional transmission-reflection problem with a finite range potential, $V(x) \neq 0$ for $0<|x|<a$ only.
(a) Suppose that we have an incident wave coming from the left: $\langle x \mid \phi\rangle=e^{i k x} / \sqrt{2 \pi}$. How must we handle the singular $1 /\left(E-H_{0}\right)$ operator if we are to have a transmitted wave only for $x>a$ and a reflected wave and the original wave for $x<-a$? Is the $E \rightarrow E+i \epsilon$ prescription still correct? Obtain an expression for the appropriate Green's function and write an integral equation for $\left\langle x \mid \psi^{(+)}\right\rangle$.
(b) Consider the special case of an attractive δ-function potential

$$
\begin{equation*}
V=-\left(\frac{\gamma \hbar^{2}}{2 m}\right) \delta(x), \quad(\gamma>0) \tag{16}
\end{equation*}
$$

Solve the integral equation to obtain the transmission and reflection amplitudes.
(c) The one-dimensional δ-function potential with $\gamma>0$ admits one and only one bound state for any value of γ. Show that the transmission and reflection amplitudes you computed have bound-state poles at the expected positions when k is regarded as a complex variable.

