944 QUANTUM MECHANICS - Final Exam Due: Thursday, 20 December, 2007

No collaboration permitted on the final exam. You may freely use the literature, but with
diligent referencing. Do not include rough notes or programming efforts; give only your final
logical development in legible handwriting. Presentation will be a primary factor in grading.

1. This problem is about the Bogoliubov transformation. A common tool in studying
many-body quantum systems is the operator transform. Suppose the particle creation
and annihilation operators aj and a; can be algebraically expressed in terms of a new
set of operators blT and b; that obey the same canonical commutation relations:

[bi.b;] = LY =0 [b,b]] = 4. (1)
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The operators bj and b; are often said to create/annihilate quasiparticles. The com-
mutation relations, Eq. (1), imply that there is a unique state |B) that is annihilated
by all b;; this state is usually referred to as the quasiparticle vacuum, the states of the
form blT |B) are the one-quasiparticle states, etc. Whenever the quasiparticles can be

labeled by the same quantum numbers (e.g. E) as the original bosonic particles of the
theory, it is often convenient to make a unitary operator transform:

b, = UaUT, b = UdlUT, (2)

where U is a unitary operator in the Fock space, usually of the form exp(X) for some
anti-hermitian polynomial X in a; and aZT.

a) Show that the unitarity of U automatically guarantees that b, and b! satisf
y y 8 n y

Eq. (1), and that the quasiparticle state |B) = U |0) is the quasiparticle vacuum.

(b) Verify that for X = ¥, (c,al — cta,), exp (X)ayexp (—X) = a, — c,. This
transform is a c-number shift.

(c) Now let X =3, 27, (e (al)? — e7*"(a,)?) (n, and A, are real). Show that for
this U = exp(X), Egs. (2) define a diagonal canonical transform:

A

b; = a;coshn; — € iaj sinh 7;, bz = coshma,T — e Piginhna, . (3)

(d) In order to see the utility of the Bogoliubov transformation, consider the simple
case of one creation/annihilation operator pair with A = 7. We then have

b = acoshn + alsinhyp . (4)
Use this transformation to obtain the eigenvalues of the following Hamiltonian:
1
H = hwa'a + §V(aa +a'al) . (5)

Also give the upper limit on V' for which this can be done.

(e) Write down the ground state of the Hamiltonian above in terms of the number
states afa|n) = n|n).



2. This problem is about Pauli’s method of solving the hydrogen atom. For all spherically-
symmetric potentials, discrete spectra of bound state energies have (21+ 1)-fold degen-
eracy mandated by the SO(3) symmetry — all states |, m,n,) with the same [ and n,
but different m have the same energy E(l,n,). For most potentials, there is no further
degeneracy — different combinations of [ and n,. give different energies. However, there
are two “accidentally degenerate” exceptions to that rule: the spherically-symmetric
harmonic oscillator potential V = 1 Mw?#2, and the Coulomb potential V = —e2Z /7.
In both cases the extra degeneracy is due to non-obvious conservation laws leading
to unexpected enlargement of the symmetry group from the rotations-only SO(3) to
SU(3) in the harmonic case and to SO(3) x SO(3) in the Coulomb case. (We saw this
in problem 1 of HW 3 for the case of the two-dimensional harmonic oscillator where
SO(2) is enlarged to SU(2) ~ SO(3).)

The unexpected conservation law in the Coulomb case is the Laplace-Runge-Lenz
theorem generalized from classical to quantum mechanics. Classically, we define the
Runge-Lenz vector K as

K = pxL — ¢’ZMn, (6)

where M is the particle’s mass, L = r x p is its angular momentum and n, = x/r is
a unit vector pointing towards the particle. The Laplace-Runge-Lenz theorem states
that for the Coulomb (Newton) potential, K is a conserved quantity, i.e., does not
change with time.

(a) Prove the classical Laplace-Runge-Lenz theorem.
The definition, Eq. (6) implies that x - K = L? — e?ZMr and hence r =
L?/(|K|cos¢ + e2ZM) where ¢ is the angle between K and x. Therefore, con-
stancy of the Runge-Lenz vector implies that the classical orbits are conical sec-
tions of eccentricity ¢ = K/e?ZM; for ¢ < 1 the orbit is a closed ellipse whose
pericenter lies in the direction pointed to by K.
In quantum mechanics we define the Runge-Lenz vector operator

N 1 ~ ~
K = 5(13><L—L><15) — EZMxF . (7)
(b) Verify that each of the component operators K; is hermitian and is conserved,
i.e. commutes with the Hamiltonian

- 1
H = Wﬁz — esz_l . (8)
To find out the Lie algebra generated by the conserved operators L; and Ki, we

need their commutation relations. We know that [ﬁ,, ﬁ]] = iheijkﬁk.
(c) Show that

[Ki,ij ] = Zh@]lckk [f(i,f{j ] = —QMI:I . zhewkﬁk . (9)

Now consider the subspace of the Hilbert space spanned by the bound states of
the Hamiltonian. On this subspace let us define two vector operators Q. and

Q- )

. r (10)
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(d)

Show that the six operators Q% are hermitian, conserved and obey the SO(3) x
SO(3) commutation relations:

[Q), Q%] = ihe™ QY | [QL,QV] = ke Q| [Q,,Q"] = 0. (11)

This SO(3) x SO(3) Lie algebra can be used to describe all bound states as
|q, my,q_,m_) — simultaneous eigenstates of the Q% and @)% operators. How-
ever, this description is somewhat redundant:

Verify that K- L = L - K = 0 and use this fact to show that all bound states
have Q% = Q2 and hence ¢ = ¢_.
Therefore we can label the bound states of the Coulomb potential as |g m., m_);
their energies depend only on ¢ and thus are (2¢g+1)3-fold degenerate. To compute
these energies:
First, show that

K? = (e?ZM)*> + 2MH(L* + 1*) (12)
(in classical mechanics, K* = (e2ZM)? + 2MEL?))
Second, use Egs. (10) and (12) to derive

(e2ZM)?

2A2 —|—2A2_+h2 _ = .
Q Q —OMH

(13)

And, finally, use Egs. (13) to show that the energy of the |¢ m,,m_) bound state
is

_ M(e*2)* M(e*Z)? (14)
O 2W%(2¢+1)2 T 2r*N?

where N = 2¢q + 1 is a positive integer, usually called the principal quantum
number of the bound state.

N

Show that for each value of the principal quantum number N, the orbital quantum
number [ takes all integer values between zero and N — 1.

(Hint: Use L= Q. +Q_.)

Also, argue that this means that in terms of [ and the radial quantum number
n., N =1+ n, + 1, which implies that the spectrum of N consists of all positive
integers.



3. This problem is about time-dependent perturbation theory and its relation with time-
independent perturbation theory.

(a)

When the potential V is time-independent, work out (s|T'(t,0)|s) to second
order and identify AM, A® and the “wave-function renormalization” Z; in the
expansion of

(s| T(t,0)|s) = Z; e *FY" 1 rapidly oscillating terms

— (a0 a®)e 4
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and show that they agree with the results from time-independent perturbation
theory, Eqgs. (5.1.42), (5.1.44) and (5.1.48b) in Sakurai. Note that this identifi-
cation is done in the ¢ — oo limit where rapidly oscillating terms are dropped.
Explain why this identification works.

Now consider a harmonic perturbation V' = Vj coswt. Work out the second-order
energy shift. Does your expression recover the result from time-independent
perturbation theory in the limit w — 07 Explain your answer.

4. This problem is about scattering in one dimension. The Lippmann-Schwinger formal-
ism can be applied to a one-dimensional transmission-reflection problem with a finite
range potential, V' (x) # 0 for 0 < |z| < a only.

(a)

Suppose that we have an incident wave coming from the left: (x|¢) = e?**/\/27.
How must we handle the singular 1/(F — Hy) operator if we are to have a trans-
mitted wave only for x > a and a reflected wave and the original wave for z < —a?
Is the E — FE + i€ prescription still correct? Obtain an expression for the appro-
priate Green’s function and write an integral equation for (z¢(+).

Consider the special case of an attractive d-function potential

g (7—h2> 5(x),  (y>0) . (16)

2m

Solve the integral equation to obtain the transmission and reflection amplitudes.

The one-dimensional ¢-function potential with v > 0 admits one and only one
bound state for any value of 7. Show that the transmission and reflection ampli-
tudes you computed have bound-state poles at the expected positions when k is
regarded as a complex variable.



