944 QUANTUM MECHANICS - Homework \#1. Due: Friday, September 21, 2007.

1. This problem is about the orbital angular momentum operator, $\hat{L}_{i}=\epsilon_{i j k} \hat{X}_{j} \hat{P}_{k}$.
(a) Using canonical commutation relations between components of \hat{X}_{i} and \hat{P}_{i}, show that

$$
\begin{equation*}
\left[\hat{X}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{X}_{k} \quad \text { and } \quad\left[\hat{P}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{P}_{k} . \tag{1}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
\left[\hat{L}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{L}_{k} \quad \text { and } \quad \epsilon_{i j k} \hat{L}_{j} \hat{L}_{k}=i \hbar \hat{L}_{i} \tag{2}
\end{equation*}
$$

(c) Define $\hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y}$ and show that

$$
\begin{equation*}
\left[\hat{L}_{z}, \hat{L}_{ \pm}\right]= \pm \hbar \hat{L}_{ \pm} \quad \text { and } \quad\left[\hat{L}_{+}, \hat{L}_{-}\right]=2 \hbar \hat{L}_{z} \tag{3}
\end{equation*}
$$

(d) Show that in the spherical coordinate basis

$$
\begin{align*}
\hat{L}_{z} \Psi(r, \theta, \phi) & =-i \hbar \frac{\partial}{\partial \phi} \Psi(r, \theta, \phi) \\
\hat{L}_{ \pm} \Psi(r, \theta, \phi) & =-i \hbar e^{ \pm i \phi}\left(\pm i \frac{\partial}{\partial \theta}-\frac{1}{\tan \theta} \frac{\partial}{\partial \phi}\right) \Psi(r, \theta, \phi) \tag{4}
\end{align*}
$$

(e) Compute $\hat{L}_{i} \hat{L}_{i} \Psi(r, \theta, \phi)$ in the same basis.
(Hint: use $\hat{L}_{i} \hat{L}_{i}=\hat{L}_{z}^{2}+\frac{1}{2} \hat{L}_{+} \hat{L}_{-}+\frac{1}{2} \hat{L}_{-} \hat{L}_{+}$.)
2. This problem is about rotations in three dimensions. For a rotation by angle α around an axis of a unit vector \vec{n}, the rotation matrix is

$$
\begin{equation*}
R_{i j}(\alpha, \vec{n})=\delta_{i j} \cos \alpha-\epsilon_{i j k} n_{k} \sin \alpha+n_{i} n_{j}(1-\cos \alpha) \tag{5}
\end{equation*}
$$

A product of two rotations $R\left(\alpha^{\prime}, \vec{n}^{\prime}\right) \cdot R\left(\alpha^{\prime \prime}, \vec{n}^{\prime \prime}\right)$ is itself a rotation by some angle α around some axis \vec{n}. To determine α and \vec{n}, we demand

$$
\begin{equation*}
R_{i j}(\alpha, \vec{n})=R_{i k}\left(\alpha^{\prime}, \vec{n}^{\prime}\right) \cdot R_{j k}\left(\alpha^{\prime \prime}, \vec{n}^{\prime \prime}\right), \tag{6}
\end{equation*}
$$

and then substitute eq. (5) and solve for α and \vec{n}.
(a) Show that to second order in α^{\prime} and $\alpha^{\prime \prime}$,

$$
\begin{equation*}
\alpha \vec{n} \simeq \alpha^{\prime} \vec{n}^{\prime}+\alpha^{\prime \prime} \vec{n}^{\prime \prime}+\frac{1}{2} \alpha^{\prime} \alpha^{\prime \prime} \vec{n}^{\prime} \times \vec{n}^{\prime \prime} \tag{7}
\end{equation*}
$$

(b) Prove $\operatorname{tr} R \equiv R_{i i}=1+2 \cos \alpha$ and $\epsilon_{i j k} R_{j k}=-2 n_{i} \sin \alpha$ and use these formulas to derive exact expressions for $\cos \alpha$ and $\vec{n} \sin \alpha$ in terms of $\alpha^{\prime}, \alpha^{\prime \prime}, \vec{n}^{\prime}$ and $\vec{n}^{\prime \prime}$.
3. This problem is about Pauli matrices and the relation between abstract rotations in spin space and rotations in three dimensions.
(a) Show that for any two vectors \vec{a} and \vec{b},

$$
\begin{equation*}
(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma})=(\vec{a} \cdot \vec{b}) \mathbf{1}+i(\vec{a} \times \vec{b}) \cdot \vec{\sigma} \tag{8}
\end{equation*}
$$

(b) Show that for any angle α and for any unit vector \vec{n},

$$
\begin{equation*}
U(\alpha, \vec{n}) \equiv \exp \left(-i \frac{\alpha}{2} \vec{n} \cdot \vec{\sigma}\right)=\cos \left(\frac{\alpha}{2}\right) \mathbf{1}-i \sin \left(\frac{\alpha}{2}\right) \vec{n} \cdot \vec{\sigma} . \tag{9}
\end{equation*}
$$

(c) Solve for α and \vec{n} such that

$$
\begin{equation*}
U(\alpha, \vec{n})=U\left(\alpha^{\prime}, \vec{n}^{\prime}\right) U\left(\alpha^{\prime \prime}, \vec{n}^{\prime \prime}\right) . \tag{10}
\end{equation*}
$$

(d) The commutation relations between generators of a Lie algebra completely determine the products of their exponentials. Consider a vector of 2×2 hermitian matrices, $\vec{S} \equiv \frac{\hbar}{2} \vec{\sigma}$; commutation relations between its compontents are exactly the same as between the components \hat{J}_{i} of the angular momentum operator. Since the definition of the U matrices amounts to $U(\alpha, \vec{n})=\exp (\alpha \vec{n} \cdot \vec{S} / i \hbar)$, which is precisely analogous to $\hat{R}(\alpha, \vec{n})=\exp (\alpha \vec{n} \cdot \overrightarrow{\hat{J}} / i \hbar)$, we expect the product rule for the U matrices to be exactly the same as for the unitary rotation operators \hat{R}, which in turn sould be indentical to the product rule for the $R_{i j}$ rotation matrices given in eq. (6).
Verify that a solution of eq. (10) is automatically a solution of eq. (6). Is the converse also true?

