
Chapter 19

Angular momentum

In this chapter, we discuss the theory of angular momentum in quantum mechanics and applications of
the theory to many practical problems. The relationship between group theory and the generators of the
group are much simpler for the rotation group than the complete Galilean group we studied in Chapter 7 on
symmetries. The use of angular momentum technology is particularly important in applications in atomic
and nuclear physics. Unfortunately there is a lot of overhead to learn about before one can become reasonably
knowledgeable in the field and a proficient calculator. But the effort is well worth it — with a little work,
you too can become an “angular momentum technician!”

We start in this chapter with the eigenvalue problem for general angular momentum operators, followed
by a discussion of spin one-half and spin one systems. We then derive the coordinate representation of orbital
angular momentum wave functions. After defining parity and time-reversal operations on eigenvectors of
angular momentum, we then discuss several classical descriptions of coordinate system rotations, followed
by a discussion of how eigenvectors of angular momentum are related to each other in rotated systems. We
then show how to couple two, three, and four angular momentum systems and introduce 3j, 6j, and 9j
coupling and recoupling coefficients. We then define tensor operators and prove various theorems useful for
calculations of angular momentum matrix elements, and end the chapter with several examples of interest
from atomic and nuclear physics.

You will find in Appendix G, a presentation of Schwinger’s harmonic oscillator theory of angular mo-
mentum. This method, which involves Boson algebra, is very useful for calculation of rotation matrices
and Clebsch-Gordan coefficients, but is not necessary for a general understanding of how to use angular
momentum technology. We include it as a special topic, and use it to derive some general formulas.

A delightful collection of early papers on the quantum theory of angular momentum, starting with original
papers by Pauli and Wigner, can be found in Biedenharn and Van Dam [1]. We adopt here the notation
and conventions of the latest edition of Edmonds[2], which has become one of the standard reference books
in the field.

19.1 Eigenvectors of angular momentum

The Hermitian angular momentum operators Ji, i = 1, 2, 3, obey the algebra:

[Ji, Jj ] = i! εijkJk (19.1)

In this section, we prove the following theorem:

Theorem 33. The eigenvalues and eigenvectors of the angular momentum operator obey the equations:

J2| j,m 〉 = !2 j(j + 1)| j, m 〉 ,

Jz| j,m 〉 = ! m| j,m 〉 ,

J±| j,m 〉 = ! A(j,∓m)| j, m ± 1 〉 ,

(19.2)
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234 CHAPTER 19. ANGULAR MOMENTUM

where J± = Jx ± iJy, and

A(j,m) =
√

(j + m)(j −m + 1) , A(j, 1 ± m) = A(j,∓m) , (19.3)

with
j = 0, 1/2, 1, 3/2, 2, . . . , −j ≤ m ≤ j .

Proof. It is easy to see that J2 = J2
z + J2

y + J2
z commutes with Jz: [J2, Jz] = 0. Of course, J2 commutes

with any other component of J. Thus, we can simultaneously diagonalize J2 and any component of J, which
we choose to be Jz. We write these eigenvectors as |λ, m 〉. They satisfy:

J2|λ, m 〉 = !2 λ |λ, m 〉 ,

Jz|λ, m 〉 = ! m |λ, m 〉 .

We now define operators, J± by linear combinations of Jx and Jy: J± = Jx ± iJy, with the properies:

J†
± = J∓ , [Jz, J±] = ±! J± , [J+, J−] = 2! Jz

The total angular momentum can be written in terms of J± and Jz in several ways. We have:

J2 =
1
2
(J−J+ + J+J−) + J2

z = J+J− + J2
z − !Jz = J−J+ + J2

z + !Jz . (19.4)

The ladder equations are found by considering,

Jz {J±|λ, m 〉} = (J±Jz + [Jz, J±]) |λ, m 〉 = ! (m ± 1) {J±|λ, m 〉} .

Therefore J±|λ, m 〉 is an eigenvector of Jz with eigenvalue !(m ± 1). So we can write:

J+|λ, m 〉 = ! B(λ, m)|λ, m + 1 〉 , (19.5)
J−|λ, m 〉 = ! A(λ, m)|λ, m− 1 〉 .

But since J− = J†
+, it is easy to show that B(λ, m) = A∗(λ, m + 1).

Using (19.4), we find that m is bounded from above and below. We have:

〈λ, m |{J2 − J2
z }|λ, m 〉 = !2 (λ−m2) =

1
2
〈λ, m |(J†

+J+ + J†
−J−)|λ, m 〉 ≥ 0 .

So 0 ≤ m2 ≤ λ. Thus, for fixed λ ≥ 0, m is bounded by: −
√

λ ≤ m ≤ +
√

λ. Thus there must be a maximum
and a minimum m, which we call mmax, and mmin. This means that there must exist some ket, |λ, mmax 〉,
such that:

J+|λ, mmax 〉 = 0 ,

or, J−J+|λ, mmax 〉 = (J2 − J2
z − !Jz)|λ, mmax 〉

= !2(λ−m2
max −mmax)|λ, mmax 〉 = 0 ,

so mmax(mmax + 1) = λ. Similarly, there must exist some other ket, |λ, mmin 〉 such that:

J−|λ, mmin 〉 = 0 ,

or, J+J−|λ, mmin 〉 = (J2 − J2
z + !Jz)|λ, mmin 〉

= !2(λ−m2
min + mmin)|λ, mmin 〉 = 0 ,

so we find tht mmin(mmin − 1) = λ. Therefore we must have

mmax(mmax + 1) = λ = mmin(mmin − 1) ,
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Which means that either mmin = −mmax, which is possible, or mmin = mmax + 1, which is impossible! So
we set j = mmax = −mmin, which defines j. Then λ = mmax(mmax + 1) = mmin(mmin − 1) = j(j + 1).
Now we must be able to reach |λ, mmax 〉 from |λ, mmin 〉 by applying J+ in unit steps. This means that
mmax −mmin = 2j = n, where n = 0, 1, 2, . . . is an integer. So j = n/2 is half-integral.

We can find A(j,m) and B(j, m) by squaring the second of (19.5). We find:

!2|A(j,m)|2〈 j, m− 1 | j, m− 1 〉 = 〈 j, m |J+J−| j, m 〉 ,

= 〈 j, m |(J2 − J2
z + !Jz)| j,m 〉 ,

= !2{j(j + 1)−m2 + m} ,

= !2(j + m)(j −m + 1) .

Taking A(j, m) to be real (this is conventional), we find:

A(j,m) =
√

(j + m)(j −m + 1) ,

which also determines B(j, m) = A(j,m + 1). This completes the proof.

Remark 28. Note that we used only the commutation properties of the components of angular momentum,
and did not have to consider any representation of the angular momentum operators.

Remark 29. The appearance of half-integer quantum numbers for j is due to the fact that there exists a
two-dimensional representation of the rotation group. We will discuss this connection in Section 19.2.4 below.

Remark 30. The eigenvectors of angular momentum | j,m 〉 refer to a particular coordinate frame Σ, where we
chose to find common eigenvectors of J2 and Jz in that frame. We can also find common angular momentum
eigenvectors of J2 and Jz′ , referred to some other frame Σ′, which is rotated with respect to Σ. We write
these eigenvectors as | j,m 〉′. They have the same values for j and m, and are an equivalent description of
the system, and so are related to the eigenvectors | j, m 〉 by a unitary transformation. We find these unitary
transformations in Section 19.3 below.

19.1.1 Spin

The spin operator S is a special case of the angular momentum operator. It may not have a coordinate
representation. The possible eigenvalues for the magnitude of intrinsic spin are s = 0, 1/2, 1, 3/2, . . . .

Spin one-half

The case when s = 1/2 is quite important in angular momentum theory, and we have discussed it in great
detail in Chapter 13. We only point out here that the Pauli spin-1/2 matrices are a special case of the
general angular momentum problem we discussed in the last section. Using the results of Theorem 33 for
the case of j = 1/2, the matrix elements of the spin one-half angular momentum operator is given by:

〈 1/2,m | ( Jx + iJy ) | 1/2,m′ 〉 = !
(

0 1
0 0

)
, 〈 1/2,m | ( Jx − iJy ) | 1/2,m′ 〉 = !

(
0 0
1 0

)
,

〈 1/2,m |Jz | 1/2,m′ 〉 =
!
2

(
1 0
0 −1

)
,

So the matrices for spin-1/2 can be written in terms of the Pauli matrices by writing: S = (!/2) σ, where
σ = σxx̂ + σyŷ + σz ẑ is a matrix of unit vectors, and where the Pauli matrices are given by:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (19.6)
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The Pauli matrices are Hermitian, traceless matrices which obey the algebra:

σi σj + σj σi = 2 δij , σi σj − σj σi = 2 i εijk σk , (19.7)
or: σi σj = δij + i εijk σk ,

A spin one-half particle is fully described by a spinor χ(θ, φ) with two parameters of the form:

χ(θ, φ) =
(

e−iφ/2 cos(θ/2)
e+iφ/2 sin(θ/2)

)
, (19.8)

where (θ, φ) is the direction of a unit vector p̂. χ(θ, φ) is an eigenvector of p̂ · σ with eigenvalue +1, i.e.
spin-up in the p̂ direction. Here p̂ is called the polarization vector. The density matrix for spin one-half
can be written in terms of just one unit vector (p̂) described by two polar angles (θ, φ):

ρ(p̂) = χ(θ, φ) χ†(θ, φ) =
1
2

( 1 + p̂ · σ ) . (19.9)

This result will be useful for describing a beam of spin one-half particles.

Spin one

The Deuteron has spin one. The spinor χ describing a spin one particle is a 3× 1 matrix with three complex
components. Since one of these is an overall phase, it takes eight real parameters to fully specify a spin-one
spinor. In contrast, it takes only two real parameters to fully describe a spin one-half particle, as we found in
the last section. The density matrix ρ = χχ† is a 3×3 Hermitian matrix and so requires nine basis matrices
to describe it, one of which can be the unit matrix. That leaves eight more independent matrices which are
needed. It is traditional to choose these to be combinations of the spin-one angular momentum matrices.
From the results of Theorem 33, the matrix elements for the j = 1 angular momentum operator is given by:

〈 1,m | ( Jx + iJy ) | 1,m′ 〉 = !




0

√
2 0

0 0
√

2
0 0 0



 , 〈 1,m | ( Jx − iJy ) | 1,m′ 〉 = !




0 0 0√
2 0 0

0
√

2 0



 ,

〈 1,m |Jz | 1,m′ 〉 = !




1 0 0
0 0 0
0 0 −1



 ,

So let us put J = !S, where

Sx =
1√
2




0 1 0
1 0 1
0 1 0



 , Sy =
1√
2




0 −i 0
i 0 −i
0 i 0



 , Sz =




1 0 0
0 0 0
0 0 −1



 . (19.10)

The spin one angular momentum matrices obey the commutation relations: [Si, Sj ] = i εijkSk. Also they
are Hermitian, S†

i = Si, and traceless: Tr[Si ] = 0. They also obey Tr[ S2
i ] = 2 and Tr[SiSj ] = 0. An

additional five independent matrices can be constructed by the traceless symmetric matrix of Hermitian
matrices Sij , defined by:

Sij =
1
2
(
SiSj + SjSi

)
− 1

3
S · S , S†

ij = Sij . (19.11)

We also note here that Tr[Sij ] = 0 for all values of i and j. So then the density matrix for spin one particles
can be written as:

ρ =
1
3

(
1 + P · S +

∑

ij

Tij Sij

)
, (19.12)

and where P is a real vector with three components and Tij a real symmetric traceless 3×3 matrix with five
components. So Pi and Tij provide eight independent quantities that are needed to fully describe a beam of
spin one particles.
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Exercise 42. Find all independent matrix components of Sij . Find all values of Tr[ Si Sjk ] and Tr[ Sij Skl ].
Use these results to find Tr[ ρ Si ] and Tr[ ρ Sij ] in terms of Pi and Tij .

Exercise 43. Show that for spin one, the density matrix is idempotent: ρ2 = ρ. Find any restrictions this
places on the values of Pi and Tij .

19.1.2 Orbital angular momentum

The orbital angular momentum for a single particle is defined as:

L = R×P , (19.13)

where R and P are operators for the position and momentum of the particle, and obey the commutation
rules: [Xi, Pi ] = i! δij . Then it is easy to show that:

[Li, Lj ] = i! εijkLk , (19.14)

as required for an angular momentum operator. Defining as before L± = Lx ± i Ly, we write the eigenvalues
and eigenvectors for orbital angular momentum as:

L2 | ),m 〉 = !2 )() + 1) | ),m 〉 ,

Lz | ),m 〉 = ! m | ),m 〉 ,

L± | ),m 〉 = ! A(),∓m) | ),m ± 1 〉 ,

(19.15)

for −) ≤ m ≤ +), and ) = 0, 1, 2, . . . . We will show below that ) has only integer values. We label
eigenvectors of spherical coordinates by | r̂ 〉 )→ | θ, φ 〉, and define:

Y",m(r̂) = 〈 r̂ | ),m 〉 = 〈 θ, φ | ),m 〉 = Y",m(θ, φ) . (19.16)

In the coordinate representation, L̃ is a differential operator acting on functions:

L̃Y",m(θ, φ) = 〈 r̂ |L | ),m 〉 =
!
i
r̂×∇ Y",m(θ, φ) , (19.17)

We can easily work out the orbital angular momentum in spherical coordinates. Using

x = r sin θ cos φ , y = r sin θ sinφ , z = r cos θ ,

with spherical unit vectors defined by:

r̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ

φ̂ = − sinφ x̂ + cos φ ŷ

θ̂ = cos θ cos φ x̂ + cos θ sinφ ŷ − sin θ ẑ ,

we find that the gradient operator is given by:

∇ = r̂
∂

∂r
+ φ̂

1
r sin θ

∂

∂φ
+ θ̂

1
r

∂

∂θ
.

So the angular momentum vector is given by:

L̃ =
!
i
r×∇ =

!
i

{
r̂× φ̂

1
sin θ

∂

∂φ
+ r̂× θ̂

∂

∂θ

}
=

!
i

{
−θ̂

1
sin θ

∂

∂φ
+ φ̂

∂

∂θ

}
,
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which is independent of the radial coordinate r. So from (19.17), we find:

L̃xY",m(θ, φ) =
!
i

{
− sinφ

∂

∂θ
− cos φ

tan θ

∂

∂φ

}
Y",m(θ, φ) ,

L̃yY",m(θ, φ) =
!
i

{
+cos φ

∂

∂θ
− sinφ

tan θ

∂

∂φ

}
Y",m(θ, φ) ,

L̃zY",m(θ, φ) =
!
i

{
∂

∂φ

}
Y",m(θ, φ) ,

where Y",m(θ, φ) = 〈 θ, φ | ),m 〉. So we find

L̃±Y",m(θ, φ) =
!
i

e±iφ

{
±i

∂

∂θ
− 1

tan θ

∂

∂φ

}
Y",m(θ, φ) ,

and so

L̃2 Y",m(θ, φ) =
{

1
2
(L+L− + L−L+) + L2

z

}
Y",m(θ, φ) ,

= −!2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

}
Y",m(θ, φ) ,

Single valued eigenfunctions of L2 and Lz are the spherical harmonics, Y"m(θ, φ), given by the solution of
the equations,

−
{

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

}
Y",m(θ, φ) = )() + 1) Y",m(θ, φ) ,

1
i

{
∂

∂φ

}
Y",m(θ, φ) = m Y"m(θ, φ) ,

1
i

e±iφ

{
±i

∂

∂θ
− 1

tan θ

∂

∂φ

}
Y",m(θ, φ) = A(),∓m) Y",m±1(θ, φ) ,

(19.18)

where ) = 0, 1, 2, . . ., with −) ≤ m ≤ ), and A(),m) =
√

() + m)()−m + 1). Note that the eigenvalues
of the orbital angular momentum operator are integers. The half-integers eigenvalues of general angular
momentum operators are missing from the eigenvalue spectra. This is because wave functions in coordinate
space must be single valued.

Definition 33 (spherical harmonics). We define spherical harmonics by:

Y",m(θ, φ) =






√
2) + 1

4π

()−m)!
() + m)!

(−)m eimφ Pm
" (cos θ) , for m ≥ 0,

(−)m Y ∗",−m(θ, φ) , for m < 0.
(19.19)

where Pm
" (cos θ) are the associated Legendre polynomials which are real and depend only on |m|. This is

Condon and Shortly’s definition [3], which is the same as Edmonds [2][pages 19–25] and is now standard.

The spherical harmonics defined here have the properites:

• The spherical harmonics are orthonormal and complete:
∫

Y ∗"m(Ω) Y"′m′(Ω) dΩ = δ","′δm,m′ ,
∑

"m

Y ∗"m(Ω) Y"m(Ω′) = δ(Ω− Ω′) ,

where dΩ = d(cos θ) dφ.
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• Under complex conjugation,
Y ∗",m(θ, φ) = (−)m Y",−m(θ, φ) . (19.20)

• Under space inversion:
Y",m(π − θ, φ + π) = (−)" Y",m(θ, φ) . (19.21)

• We also note that since Pm
" (cos θ) is real,

Y",m(θ,−φ) = Y",m(θ, 2π − φ) = Y ∗",m(θ, φ) . (19.22)

• At θ = 0, cos θ = 1, Pm
" (1) = δm,0 so that:

Y",m(0, φ) =
√

2) + 1
4π

δm,0 , (19.23)

independent of φ.

Other properties of the spherical harmonics can be found in Edmonds [2] and other reference books. It us
useful to know the first few spherical harmonics. These are:

Y0,0(θ, φ) =
√

1
4π

, Y1,0(θ, φ) =
√

3
4π

cos θ , Y1,±1(θ, φ) = ∓
√

3
8π

sin θ e±iφ ,

Y2,0(θ, φ) =
√

5
16π

( 2 cos2 θ − sin2 θ ) , Y2,±1(θ, φ) = ∓
√

15
8π

cos θ sin θ e±iφ ,

Y2,±2(θ, φ) =
√

15
32π

sin2 θ e±2iφ . (19.24)

Definition 34 (Reduced spherical harmonics). Sometimes it is useful to get rid of factors and define reduced
spherical harmonics (Racah [4]) C",m(θ, φ) by:

C",m(θ, φ) =
√

4π

2) + 1
Y",m(θ, φ) . (19.25)

Remark 31. The orbital angular momentum states for ) = 0, 1, 2, 3, 4, . . . are often referred to as s, p, d, f, g, . . .
states.

19.1.3 Parity and Time reversal

We discussed the effects of parity and time reversal transformations on the generators of Galilean transforma-
tions, including the angular momentum generator, in Chapter 7. We study the effect of these transformations
on angular momentum states in this section.

Parity

For parity, we found in Section 7.7.1 that P is linear and unitary, with eigenvalues of unit magnitude, and
has the following effects on the angular momentum, position, and linear momentum operators:

P−1 XP = −X ,

P−1 PP = −P ,

P−1 JP = J .

(19.26)

We also found that P−1 = P† = P. So under parity, we can take:

P |x 〉 = | − x 〉 , P |p 〉 = | − p 〉 . (19.27)
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The angular momentum operator does not change under parity, so P operating on a state of angular mo-
mentum | jm 〉 can only result in a phase. If there is a coordinate representation of the angular momentum
eigenstate, we can write:

〈 r̂ | P | ),m 〉 = 〈 P† r̂ | ),m 〉 = 〈 P r̂ | ),m 〉 = 〈−r̂ | ),m 〉
= Y",m(π − θ, φ + π) = (−)" Y",m(θ, φ) = (−)" 〈x | ),m 〉 ,

where we have used (19.21). Therefore:

P | ),m 〉 = (−)" | ),m 〉 . (19.28)

For spin 1/2 states, the parity operator must be the unit matrix. The phase is generally taken to be unity,
so that:

P | 1/2,m 〉 = | 1/2,m 〉 . (19.29)

So parity has different results on orbital and spin eigenvectors.

Time reversal

For time reversal, we found in Section 7.7.2 that T is anti-linear and anti-unitary, T −1i T = −i with
eigenvalues of unit magnitude, and has the following effects on the angular momentum, position, and linear
momentum operators:

T −1 X T = X ,

T −1 P T = −P ,

T −1 J T = −J .

(19.30)

Under time-reversal,
T |x 〉 = |x 〉 , T |p 〉 = | − p 〉 . (19.31)

The angular momentum operator reverses sign under time reversal, so T operating on a state of angular
momentum can only result in a phase. Because of the anti-unitary property, the commutation relations for
angular momentum are invariant under time reversal. However since T J2 T −1 = J2, T Jz T −1 = −Jz, and
T J± T −1 = −J∓, operating on the eigenvalue equations (19.2) by T gives:

J2
{
T | j,m 〉

}
= !2 j(j + 1)

{
T | j, m 〉

}
,

Jz

{
T | j,m 〉

}
= −! m

{
T | j, m 〉

}
,

J∓
{
T | j,m 〉

}
= −A(j,∓m)

{
T | j, m 〉

}
.

(19.32)

These equations have the solution:
T | j, m 〉 = (−)j+m | j,−m 〉 . (19.33)

Here we have introduced an arbitrary phase (−)j so that for half-integer values of j, the operation of parity
will produce a sign, not a complex number. Let us investigate time reversal on both spin-1/2 and integer
values of j.

For spin-1/2 states, in a 2× 2 matrix representation, we require:

T −1 σi T = −σi , (19.34)

for i = 1, 2, 3. Now we know that σ2 changes the sign of any σi, but it also takes the complex conjugate,
which we do not want in this case. So for spin 1/2, we take the following matrix representation of the time
reversal operator:

T = i σ2 K =
(

0 1
−1 0

)
K , (19.35)
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where K is a complex conjugate operator acting on functions. This makes T anti-linear and anti-unitary.
Now since (iσy)σx(iσy) = σx, (iσy)σy(iσy) = −σy, and (iσy)σz(iσy) = σz, and recalling that σx and σz are
real, whereas σ∗y = −σy, so that:

T −1 σi T = −σi , (19.36)

as required. Now the matrix representation of T on spinor states have the effect:

T | 1/2, 1/2 〉 = i σ2 K | 1/2, 1/2 〉 =
(

0 1
−1 0

)
K

(
1
0

)
= −

(
0
1

)
= −| 1/2,−1/2 〉 .

T | 1/2,−1/2 〉 = i σ2 K | 1/2,−1/2 〉 =
(

0 1
−1 0

)
K

(
0
1

)
= +

(
1
0

)
= +| 1/2,+1/2 〉 ,

so that

T | 1/2,m 〉 = (−)1/2+m | 1/2,−m 〉 , (19.37)

in agreement with (19.33).

Exercise 44. For the spin T operator defined in Eq. (19.35), show that:

T −1 = T † = T . (19.38)

For integer values of the angular momentum, there is a coordinate representation of the angular momen-
tum vector. If we choose

〈 r̂ | ),m 〉 = Y",m(θ, φ) , (19.39)

then we can write:

〈 r̂ | T | ),m 〉 = 〈 T † r̂ | ),m 〉∗ = 〈 T r̂ | ),m 〉∗ = 〈 r̂ | ),m 〉∗

= Y ∗",m(θ, φ) = (−)m Y",−m(θ, φ) = (−)m 〈 r̂ | ),−m 〉 .

So we conclude that:

T | ),m 〉 = (−)m | ),−m 〉 , (19.40)

which does not agree with (19.33). However if we choose:

〈 r̂ | ),m 〉 = i" Y",m(θ, φ) , (19.41)

then

〈 r̂ | T | ),m 〉 = 〈 T † r̂ | ),m 〉∗ = 〈 T r̂ | ),m 〉∗ = 〈 r̂ | ),m 〉∗

=
[
i" Y",m(θ, φ)

]∗ = (−)"+m Y",−m(θ, φ) = (−)"+m 〈 r̂ | ),−m 〉 .

which gives:

T | ),m 〉 = (−)"+m | ),−m 〉 , (19.42)

which does agree with (19.33). We will see in Section 19.4 that when orbital and spin eigenvectors are
coupled together by a Clebsch-Gordan coefficient, the operation of time reversal on the coupled state is
preserved if we choose the spherical functions defined in Eq. (19.41). However, Eq. (19.39) is generally used
in the literature.
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19.2 Rotation of coordinate frames

A fixed point P in space, described by Euclidean coordinates (x, y, z) and (x′, y′, z′) in two frames Σ and Σ′,
are related to each other by a rotation if lengths and angles are preserved. We have described this portion
of the more general Galilean transformation in Chapter 7 by a linear orthogonal transformation between the
coordinates: x′i = Rij xj , with RijRik = δjk. Proper transformations which preserve orientation are those
with det[R ] = +1. The set of all orthogonal matrices R describing rotations form a three-parameter group
called SO(3). There are several ways to describe the relative orientation of these two coordinate frames.
Some of the common ones are: an axis and angle of rotation, denoted by (n̂, θ), Euler angles, denoted by
three angles (α, β, γ), and the Cayley-Kline parameters. We will discuss these parameterizations in this
section.

There are two alternative ways to describe a rotation: the active meaning where each point in space is
transformed into a new point, which we can think of as a physical rotation of a vector or object, and the
passive meaning where the point remains fixed and the coordinate system is rotated. We use passive rotation
here, which was our convention for the general Galilean transformations of Chapter 7. Edmonds [2] uses
passive rotation, whereas Biedenharn [5], Rose [6], and Merzbacher [7] all use active rotations.1

19.2.1 Rotation matrices

Let Σ and Σ′ be two coordinate systems with a common origin, and let a point P described by a vector r
from the origin to the point and let (x, y, z) be Cartesian coordinates of the point in Σ and (x′, y′, z′) be
Cartesian coordinates of the same point in Σ′. Let us further assume that both of these coordinate systems
are oriented in a right handed sense.2 Then we can write the vector r in either coordinate system using unit
vectors:3

r = xi êi = x′i ê
′
i , (19.43)

where êi and ê′i are orthonormal sets of unit vectors describing the two Cartesian coordinate systems:
êi · êj = ê′i · ê′j = δij . So we find that components of the vector r in the two systems are related by:

x′i = Rij xj , where Rij = ê′i · êj , (19.44)

where R must satisfy the orthogonal property:

RT
ik Rkj = Rki Rkj = δij . (19.45)

That is R−1 = RT . The unit vectors transform in the opposite way:

ê′i = êj Rji = RT
ij êj , (19.46)

so that, using the orthogonality relation, Eq. (19.43) is satisfied. From Eq. (19.45) we see that det[ R ] = ±1,
but, in fact, for rotations, we must restrict the determinant to +1 since rotations can be generated from the
unit matrix, which has a determinant of +1.

Matrices describing coordinate systems that are related by positive rotations about the x-, y-, and z-axis
by an amount α, β, and γ respectively are given by:

Rx(α) =




1 0 0
0 cos α sinα
0 − sinα cos α



 , Ry(β) =




cos β 0 − sinβ

0 1 0
sinβ 0 cos β



 , Rz(γ) =




cos γ sin γ 0
− sin γ cos γ 0

0 0 1



 . (19.47)

Notice the location of negative signs! One can easily check that these matrices are orthogonal and have
determinants of +1.

1Biedenharn [5] states that the Latin terms for these distinctions are “alibi” for active and “alias” for passive descriptions.
2We do not consider space inversions or reflections in this chapter.
3In this section, we use a summation convention over repeated indices.
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Eq. (19.44) describes a general rotation in terms of nine direction cosines between the coordinate axes,

Rij = ê′i · êj = cos(θij) .

These direction cosines, however, are not all independent. The orthogonality requirement, and the fact
that the determinant of the matrix must be +1, provides six constraint equations, which then leave three
independent quantities that are needed to describe a rotation.

Exercise 45. Show that if Σ and Σ′ are related by a rotation matrix R and Σ′ and Σ′′ are related by a
rotation matrix R′, the coordinate systems Σ and Σ′′ are related by another orthogonal rotation matrix R′′.
Find R′′ in terms of R and R′, and show that it has determinant +1.

Definition 35 (The O+(3) group). The last exercise shows that all three-dimensional rotational matrices
R form a three parameter group, called O+(3), for orthogonal group with positive determinant in three-
dimensions.

The direction cosines are not a good way to parameterize the rotation matrices R since there are many
relations between the components that are required by orthogonality and unit determinant. In the next
sections, we discuss ways to parameterize this matrix.

19.2.2 Axis and angle parameterization

Euler’s theorem in classical mechanics states that “the general displacement of a rigid body with one point
fixed is a rotation about some axis.”[8, p. 156] We show in this section how to parameterize the rotation
matrix R by an axis and angle of rotation. We start by writing down the form of the rotation matrix for
infinitesimal transformations:

Rij(n̂,∆θ) = δij + εijkn̂k ∆θ + · · · ≡ δij + i ( Lk )ij n̂k ∆θ + · · · , (19.48)

where n̂ is the axis of rotation, ∆θ the magnitude of the rotation. Here we have introduced three imaginary
Hermitian and antisymmetric 3 × 3 matrices (Lk )ij , called the classical generators of the rotation. They
are defined by:

( Lk )ij =
1
i

εijk . (19.49)

Explicitly, we have:

Lx =
1
i




0 0 0
0 0 1
0 −1 0



 , Ly =
1
i




0 0 −1
0 0 0
1 0 0



 , Lz =
1
i




0 1 0
−1 0 0
0 0 0



 . (19.50)

Note that these angular momentum matrices are not the same as the spin one angular momentum matrices
Si found in Eqs. (19.10), even though they are both 3× 3 matrices! The matrices Lk are called the adjoint
representation of the angular momentum generators. The matrix of unit vectors L is defined by:

L = Li êi =
1
i




0 ê3 −ê2

−ê3 0 ê1

ê2 −ê1 0



 . (19.51)

so that we can write, in matrix notation:

R(n̂,∆θ) = 1 + iL · n̂∆θ + · · · . (19.52)

So L† = −LT = L. So RT (n̂,∆θ) = 1 − iL · n̂∆θ + · · · . The L matrix is imaginary, but the R(n̂,∆θ)
matrix is still real. The classical angular momentum generators have no units and satisfy the commutation
relations:

[Li, Lj ] = i εijk Lk , (19.53)
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which is identical to the ones for the quantum angular momentum operator, except for the fact that in
quantum mechanics, the angular momentum operator has units and the commutation relations a factor of
!. There is no quantum mechanics or ! here!

Exercise 46. Carefully explain the differences between the adjoint representation of the angular momentum
matrices Li defined here, and the angular momentum matrices Si discussed in Section 19.1.1. Can you find
a unitary transformation matrix U which relates the Si set to the Li set?

We can now construct a finite classical transformation matrix R(n̂, θ) by compounding N infinitesimal
transformation of an amount ∆θ = θ/N about a fixed axis n̂. This gives:

R(n̂, θ) = lim
N→∞

[
1 + i

n̂ · L θ

N

]N

= ei n̂·L θ . (19.54)

The difficulty here is that the matrix of vectors L appears in the exponent. We understand how to interpret
this by expanding the exponent in a power series. In order to do this, we will need to know the value of
powers of the Li matrices. So we compute:

( n̂ · L )ij =
1
i

nk εijk ,

( n̂ · L )2ij = −nk nk′ εilk εljk′ = nk nk′ εikl εljk′ = nk nk′ ( δijδkk′ − δik′δkj )

= δij − ni nj ≡ Pij

( n̂ · L )3ij = ( n̂ · L )2il ( n̂ · L )lj =
1
i

( δil − ni nl) nk εljk =
1
i

( nk εijk − ni nl nk εljk )

=
1
i

nk εijk = ( n̂ · L )ij ,

( n̂ · L )4ij = ( n̂ · L )2ij = Pij , etc · · ·

(19.55)

One can see that terms in a power series expansion of R(n̂, θ) reproduce themselves, so we can collect terms
and find:

Rij(n̂, θ) =
[
ei θn̂·L ]

ij

= δij + i ( n̂ · L )ij θ − 1
2!

( n̂ · L )2ij θ2 − i

3!
( n̂ · L )3ij θ3 +

1
4!

( n̂ · L )4ij θ4 + · · ·

= ni nj + Pij + i ( n̂ · L )ij θ − 1
2!

Pij θ2 − i

3!
( n̂ · L )ij θ3 +

1
4!

Pij θ4 + · · ·

= ni nj + Pij cos(θ) + i ( n̂ · L )ij sin(θ)
= ni nj + ( δij − ni nj ) cos(θ) + εijk nk sin(θ) .

(19.56)

In terms of unit vectors, the last line can be written as:

Rij(n̂, θ) = ( n̂ · êi ) ( n̂ · êj ) +
[
( êi · êj )− ( n̂ · êi ) ( n̂ · êj )

]
cos(θ) + ( n̂× êi ) · êj sin(θ)

= ( n̂ · êi ) ( n̂ · êj ) +
[
( n̂× ( êi × n̂ ) ) · êj

]
cos(θ) + ( n̂× êi ) · êj sin(θ) .

(19.57)

So since r = xi êi, we have:

x′i = Rij(n̂, θ) xj = ( n̂ · êi ) ( n̂ · r ) +
[
( n̂× ( êi × n̂ ) ) · r

]
cos(θ) + ( n̂× êi ) · r sin(θ)

=
[
( n̂ · r ) n̂ + ( n̂× ( r× n̂ ) ) cos(θ) + ( r× n̂ ) sin(θ)

]
· êi ,

(19.58)

So if we define r′ as a vector with components in the frame Σ′, but with unit vectors in the frame Σ, we find:

r′ = x′i êi = ( n̂ · r ) n̂ + ( n̂× ( r× n̂ ) ) cos(θ) + ( r× n̂ ) sin(θ) . (19.59)
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Exercise 47. Consider the case of a rotation about the z-axis by an amount θ, so that n̂ = êz, and set
r = x êx + y êy + z êz, show that the components of the vector r′, given by Eq. (19.59), are given by
x′i = Rij(êz, θ) xj , as required.

Exercise 48. Show that the trace of R(n̂, θ) gives:
∑

i

Rii(n̂, θ) = 1 + 2 cos(θ) = 2 cos2(θ/2) , (19.60)

where θ is the rotation angle.

Exercise 49. Find the eigenvalues and eigenvectors of Rij(êz, θ). Normalize the eigenvectors to the unit
sphere, x2 + y2 + z2 = 1, and show that the eigenvector with eigenvalue of +1 describes the axis of rotation.
Extra credit: show that the eigenvalues of an arbitrary orthogonal rotation matrix R are +1, 0, and −1.
(See Goldstein [8].).

Exercise 50. For the double rotation R′R = R′′, show that the rotation angle θ′′ for the combined rotation
is given by:

2 cos2(θ′′/2) = (n̂′ · n̂)2 + 2 (n̂′ · n̂)2 cos(θ′ + θ)

+
[
1− (n̂′ · n̂)2

] [
cos(θ′) + cos(θ′) cos(θ) + cos(θ)

]
. (19.61)

It is more difficult to find the new axis of rotation n̂′′. One way is to find the eigenvector with unit eigenvalue
of the resulting matrix, which can be done numerically. There appears to be no closed form for it.

19.2.3 Euler angles

The Euler angles are another way to relate two coordinate systems which are rotated with respect to one
another. We define these angles by the following sequence of rotations, which, taken in order, are:4

1. Rotate from frame Σ to frame Σ′ an angle α about the z-axis, 0 ≤ α ≤ 2π.
2. Rotate from frame Σ′ to frame Σ′′ an angel β about the y′-axis, 0 ≤ β ≤ π.
3. Rotate from frame Σ′′ to frame Σ′′′ an angle γ about the z′′-axis, 0 ≤ γ ≤ 2π.

The Euler angles are shown in the Fig 19.1. For this definition of the Euler angles, the y′-axis is called the
“line of nodes.” The coordinates of a fixed point P in space, a passive rotation, is defined by: (x, y, z) in Σ,
(x′, y′, z′) in Σ′, (x′′, y′′, z′′) in Σ′′, and (X, Y, Z) ≡ (x′′′, y′′′, z′′′) in Σ′′′. Then, in a matrix notation,

x′′′ = Rz(γ) x′′ = Rz(γ)Ry(β) x′ = Rz(γ) Ry(β) Rz(α) x ≡ R(γ, β, α) x , (19.62)

where

R(γ, β, α) = Rz(γ)Ry(β) Rz(α)

=




cos γ sin γ 0
− sin γ cos γ 0

0 0 1








cos β 0 − sinβ

0 1 0
sinβ 0 cos β








cos α sinα 0
− sinα cos α 0

0 0 1





=




cos γ cos β cos α− sin γ sinα, cos γ cos β sinα + sin γ sinα, − cos γ sinβ
− sin γ cos β cos α− cos γ sinα, − sin γ cos β sinα + cos γ cos α, sin γ sinβ

sinβ cos α, sinβ sinα, cos β



 .

(19.63)

Here we have used the result in Eqs. (19.47). The rotation matrix R(γ, β, α) is real, orthogonal, and the
determinant is +1.

4This is the definition of Euler angles used by Edmonds [2][p. 7] and seems to be the most common one for quantum mechanics.
In classical mechanics, the second rotation is often about the x′-axis (see Goldstein [8]). Mathematica uses rotations about the
x′-axis. Other definitions are often used for the quantum mechanics of a symmetrical top (see Bohr).



246 CHAPTER 19. ANGULAR MOMENTUM

Figure 19.1: Euler angles for the rotations Σ → Σ′ → Σ′′ → Σ′′′. The final axis is labeled (X, Y, Z).

We will also have occasion to use the inverse of this transformation:

R−1(γ, β, α) = RT (γ, β, α) = Rz(−α)Ry(−β) Rz(−γ)

=




cos α − sinα 0
sinα cos α 0

0 0 1








cos β 0 sinβ

0 1 0
− sinβ 0 cos β








cos γ − sin γ 0
sin γ cos γ 0

0 0 1





=




cos α cos β cos γ − sinα sin γ, − cos α cos β sin γ + sinα sin γ, cos α sinβ
sinα cos β cos γ + cos α sin γ, − sinα cos β sin γ + cos α cos γ, sinα sinβ

− sinβ cos γ, sinβ sin γ, cos β



 .

(19.64)

We note that the coordinates (x, y, z) in the fixed frame Σ of a point P on the unit circle on z′′′-axis in the
Σ′′′ frame, (x′′′, y′′′, z′′′) = (0, 0, 1) is given by:




x
y
z



 = R−1
ij (α, β, γ)




0
0
1



 =




sinβ cos α
sinβ sinα

cos β



 , (19.65)

so the polar angles (θ, φ) of this point in the Σ frame is θ = β and φ = α. We will use this result later.

19.2.4 Cayley-Klein parameters

A completely different way to look at rotations is to describe them as directed great circle arcs on the unit
sphere in three dimensions. Points on the sphere are described by the set of real variables (x1, x2, x3), with
x2

1 + x2
2 + x2

3 = 1. These arcs are called turns by Biedenharn [5][Ch. 4], and are based on Hamilton’s theory
of quanterions [9]. Points at the beginning and end of the arc form two reflection planes with the center of
the sphere. The line joining these planes is the axis of the rotation and the angle between the planes half
the angle of rotation. Turns can be added much like vectors, the geometric rules for which are given by
Biedenharn [5][p. 184]. Now a stereographic projection from the North pole of a point on the unit sphere
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and the equatorial plane maps a unique point on the sphere (except the North pole) to a unique point on
the plane, which is described by a complex number z = x + iy. The geometric mapping can easily be found
by similar triangles to be:

z = x + iy =
x1 + i x2

1− x3
=

1 + x3

x1 − ix2
. (19.66)

Klein [10, 11] and Cayley [12] discovered that a turn, or rotation, described on the unit circle could be
described on the plane by a linear fractional transformation of the form:

z′ ∗ =
a z∗ + b

c z∗ + d
, (19.67)

where (a, b, c, d) are complex numbers satisfying:

|a|2 + |b|2 = |c|2 + |d|2 = 1 , c a∗ + d b∗ = 0 . (19.68)

The set of numbers (a, b, c, d) are called the Cayley-Klein parameters. In order to prove this, we need a way
to describe turns on the unit sphere. Let r̂ and p̂ be unit vectors describing the start and end point of the
turn. Then we can form a scalar ξ0 = r̂ · p̂ ≡ cos(θ/2) and a vector ξ = r̂ × p̂ ≡ n̂ sin(θ/2), which satisfy
the property:

ξ2
0 + ξ2 = 1 . (19.69)

Thus a turn can be put in one-to-one correspondence with the set of four quantities (ξ0, ξ) lying on a four -
dimensional sphere. The rule for addition of a sequence of turns can be found from these definitions. Let r̂,
p̂, be unit vectors for the start and end of the first turn described by the parameters (ξ0, ξ), and p̂ and ŝ be
the start and end of the second turn described by the parameters (ξ′0, ξ

′). This means that:

p̂ = ξ0 r̂ + ξ × r̂ , ξ0 = r̂ · p̂ , ξ = r̂× p̂ , (19.70)
ŝ = ξ′0 p̂ + ξ′ × p̂ , ξ′0 = p̂ · ŝ , ξ′ = p̂× ŝ . (19.71)

Substituting (19.70) into (19.71) gives:

ŝ = ξ′0
(
ξ0 r̂ + ξ × r̂

)
+ ξ′ ×

(
ξ0 r̂ + ξ × r̂

)

= ξ′′0 r̂ + ξ′′ × r̂ ,
(19.72)

where

ξ′′0 = ξ′0 ξ0 − ξ′ · ξ ,

ξ′′ = ξ0 ξ′ + ξ′0 ξ + ξ′ × ξ .
(19.73)

Now since r̂ · ξ′′ = 0, we find from (19.72) that

r̂ · ŝ = cos(θ′′/2) , r̂× ŝ = n̂′′ sin(θ′′/2) , (19.74)

which means that the set of all turns form a group, with a composition rule.

Exercise 51. Show that (19.73) follows from (19.72). Show also that r̂ · ξ′′ = 0.

Cayley [13] noticed that the composition rule, Eq. (19.73), is the same rule for multiplication of two
quaternions. That is, if we define

ξ̂ = ξ0 1̂ + ξ1 î + ξ2 ĵ + ξ3 k̂ = ξ0 1̂ + ξ , (19.75)

where the quaternion multiplication rules are:5

î ĵ = −ĵ î = k̂ , ĵ k̂ = −k̂ ĵ = î , k̂ î = −î k̂ = ĵ , 1̂2 = 1̂ , î2 = ĵ2 = k̂2 = −1̂ , (19.76)
5One should think of quaternions as an extension of the complex numbers. They form what is called a division algebra.
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then it is easy to show that quaternion multiplication reproduces the composition rule:

ξ̂′′ = ξ̂′ ξ̂ . (19.77)

So it is natural to use the algebra of quaternions to describe rotations.

Exercise 52. Show that Eq. (19.77) reproduces the composition rule (19.73) using the quaternion multipli-
cation rules of Eq. (19.76).

The adjoint quaternion ξ̂† is defined by:

ξ̂† = ξ0 1̂− ξ1 î− ξ2 ĵ − ξ3 k̂ = ξ0 1̂− ξ , (19.78)

so that the length of ξ̂ is given by:
ξ̂† ξ̂ = ξ2

0 + ξ2 = 1 . (19.79)

We next have to show how a position (x1, x2, x3) on the unit sphere is transformed by a turn (ξ0, ξ). To this
end, we define a quaternion x̂ by the definition:

x̂ = x1 î + x2 ĵ + x3 k̂ , with x0 = 0 . (19.80)

Then a rotation of the coordinates by a turn ξ̂ is given by the quaternion product:

x̂′ = ξ̂ x̂ ξ̂† . (19.81)

To prove this statement, we note that

x̂′ = ξ̂ x̂ ξ̂† =
(
ξ0 1̂ + ξ1 î + ξ2 ĵ + ξ3 k̂

) (
x1 î + x2 ĵ + x3 k̂

) (
ξ0 1̂− ξ1 î− ξ2 ĵ − ξ3 k̂

)

= 0 1̂ + x′1 î + x′2 ĵ + x′3 k̂ ,
(19.82)

where, after some algebra, we find:

x′1 = ξ0

(
ξ0 x1 + ξ2 x3 − ξ3 x2

)
+ ξ1

(
ξ1 x1 + ξ2 x2 + ξ3 x3

)
+ ξ2

(
ξ0 x3 + ξ1 x2 − ξ2 x1

)

− ξ3

(
ξ0 x2 − ξ1 x3 + ξ3 x1

)

= x1 cos2(θ/2) +
(
n2 x3 − n3 x2 + n2 x3 − n3 x2

)
sin(θ/2) cos(θ/2)

+
(
n2

1 x1 + n1 n2 x2 + n1 n3 x3 + n2 n1 x2 − n2
2 x1 + n3 n1 x3 − n2

3 x1

)
sin2(θ/2)

= x1 cos2(θ/2) +
(
2 n2 x3 − 2 n3 x2

)
sin(θ/2) cos(θ/2)

+
(
2 n2

1 x1 − x1 + 2 n1 n2 x2 + 2 n1 n3 x3

)
sin2(θ/2)

= x1 cos(θ) +
(
n2 x3 − n3 x2

)
sin(θ)

+
(
n2

1 x1 + n1 n2 x2 + n1 n3 x3

) (
1− cos(θ)

)

= n1

(
n1 x1 + n2 x2 + n3 x3

)

+
(
x1 − n2

1( n1 x1 + n2 x2 + n3 x3 )
)

cos(θ) +
(
n2 x3 − n3 x2

)
sin(θ)

=
(
n̂ · r

)
n1 +

(
n× ( r× n )

)
1

cos(θ)−
(
r× n̂

)
1

sin(θ) ,

(19.83)

with similar results for x′2 and x′3, so in vector form, we find:

r′ =
(
n̂ · r

)
n +

(
n× ( r× n )

)
cos(θ)−

(
r× n̂

)
sin(θ) , (19.84)

which ia rotation of a vector. So the quaternion product (19.81) does describe the rotation of coordinate
systems generated by a turn.
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Rather than using quaternions, physicists prefer to use the Pauli matrices to represent turns. That is, if
we make the identification,

1̂ )→ 1 , î )→ σx , ĵ )→ σy , k̂ )→ σz , (19.85)

so that a turn is represented by the unitary 2× 2 matrix:

ξ ≡ D(R) =
(

ξ0 + ξ3 ξ1 − iξ2

ξ1 + iξ2 ξ0 − ξ3

)
= ξ0 + ξ · σ = cos(θ/2) + i n̂ · σ sin(θ/2) . (19.86)

Here the composition rule is represented by matrix multiplication, D(R′′) ≡ D(R′R) = D(R′) D(R). A
point P on the unit sphere in frame Σ is represented by the 2× 2 matrix function of coordinates V (r), given
by:

V (r̂) = r̂ · σ =
(

x3 x1 − ix2

x1 + ix2 −x3

)
, (19.87)

with a similar expression for V (r̂′) = r̂′ · σ with x′i = Rijxj . The matrix version of the quaternion product
(19.81) for the rotation of the coordinates is given in the next theorem.

Theorem 34. The matrices V (r̂) and V (r̂′) are related by:

V (r̂′) = D(R) V (r̂) D†(R) , (19.88)

where the unitary matrix D(R) is given by:

D(n̂, θ) = ei n̂·σ θ/2 = cos(θ/2) + i (n̂ · σ) sin(θ/2) , (19.89)

in terms of an axis and angle of rotation (n̂, θ),

D(a, b, c, d) =
(

a b
c d

)
(19.90)

in terms of the Cayley-Klein paramteres (a, b, c, d) which satisfy:

|a|2 + |b|2 = |c|2 + |d|2 = 1 , c a∗ + d b∗ = 0 . (19.91)

and
D(γ, β, α) =

(
ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
, (19.92)

in terms of the Euler angles (α, β, γ).

Proof. We will prove this using the axis and angle of rotation parameters. We first consider a basis trans-
formation of the σ matrices of the form:

D(n̂, θ)σ D†(n̂, θ) =
[
cos(θ/2) + i (n̂ · σ) sin(θ/2)

]
σ

[
cos(θ/2)− i (n̂ · σ) sin(θ/2)

]

= σ cos2(θ/2)− i [σ, (n̂ · σ) ] sin(θ/2) cos(θ/2) + (n̂ · σ) σ (n̂ · σ) sin2(θ/2)
(19.93)

Now using

[σ, (n̂ · σ) ] = 2i ( n̂× σ ) ,

(n̂ · σ) σ (n̂ · σ) = σ + 2i (n̂ · σ) (n̂× σ) = 2 (n̂ · σ) n̂− σ ,
(19.94)

Eq. (19.93) becomes:

D(n̂, θ)σ D†(n̂, θ) = σ cos(θ)− ( σ × n̂ ) sin(θ) + (n̂ · σ) n̂ ( 1− cos(θ) )
= ( n̂ · σ ) n̂ + n̂× (σ × n̂ ) cos(θ)− ( σ × n̂ ) sin(θ) .

(19.95)
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Then, in the adjoint representation, the rotation of coordinates is expressed as:

D(n̂, θ) V (r̂) D†(n̂, θ) = D(n̂, θ) r̂ · σ D†(n̂, θ)
= ( n̂ · r̂ ) ( n̂ · σ ) + r̂ · n̂× ( σ × n̂ ) cos(θ)− r̂ · (σ × n̂ ) sin(θ)

=
[
( n̂ · r̂ ) n̂ + n̂× ( r̂× n̂ ) cos(θ) + ( r̂× n̂ ) sin(θ)

]
· σ

= r̂′ · σ = V (r̂′) ,

(19.96)

where the vector r̂′ is given by Eq. (19.59), with x′i = Rij(n̂, θ) xj . This completes the proof.

But Eq. (19.88) is not the only way to describe a rotation, here. We can also use the transformation
properties of spinors which are eigenvectors of the operator V (r̂). There are two such spinors. From
Theorem 27 in Chapter 13, the eigenvalue equation for the operator V (r̂) = r̂ · σ is given by:

r̂ · σ χ±(θ, φ) = ±χ±(θ, φ) . (19.97)

The eigenvectors, written in a number of different ways, are given by:

χ+(θ, φ) =
(

χ+,+(θ, φ)
χ+,−(θ, φ)

)
=

(
e−iφ/2 cos(θ/2)
e+iφ/2 sin(θ/2)

)

=
e−iφ/2

2 cos(θ/2)

(
2 cos2(θ/2)

e+iφ sin(θ/2) cos(θ/2)/2

)
=

e−iφ/2

2 cos(θ/2)

(
1 + x3

x1 + ix2

)
,

=
e+iφ/2

2 sin(θ/2)

(
e−iφ sin(θ/2) cos(θ/2)/2

2 sin2(θ/2)

)
=

e−iφ/2

2 sin(θ/2)

(
x1 − ix2

1− x3

)
,

(19.98)

and

χ−(θ, φ) =
(

χ−,+(θ, φ)
χ−,−(θ, φ)

)
=

(
−e−iφ/2 sin(θ/2)
e+iφ/2 cos(θ/2)

)

=
e+iφ/2

2 cos(θ/2)

(
−e−iφ sin(θ/2) cos(θ/2)/2

2 cos2(θ/2)

)
=

e+iφ/2

2 cos(θ/2)

(
−x1 + ix2

1 + x3

)
,

=
e−iφ/2

2 sin(θ/2)

(
−2 sin2(θ/2)

e+iφ sin(θ/2) cos(θ/2)/2

)
=

e−iφ/2

2 sin(θ/2)

(
x3 − 1

x1 + ix2

)
,

(19.99)

where
x1 = sin θ cos φ , x2 = sin θ sinφ , x3 = cos θ . (19.100)

We define the ratio of the complex conjugates of the upper to lower components of these spinors by:

z± =
χ∗±,+(θ, φ)
χ∗±,−(θ, φ)

. (19.101)

So from (19.98), we find:

z∗+ =
1 + x3

x1 + ix2
=

x1 − ix2

1− x3
,

z∗− =
−x1 + ix2

1 + x3
=

x3 − 1
x1 + ix2

= − 1
z+

.
(19.102)

But now we recognize z+ as the stereographic projection mapping discovered by Klein and Cayley given in
Eq. (19.66) from the unit sphere to the complex plane:

z+ = x + iy =
x1 + i x2

1− x3
=

1 + x3

x1 − ix2
. (19.103)
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z∗− is the negative reciprocal of this mapping. So except for a normalization factor, components of the spinor
χ+(θ, φ) are fixed by the stereographic projection mapping. We now need to find out how spinors transform
under rotations of the coordinate system. We can deduce this transformation from Eq. (19.88). Since

( r̂′ · σ ) D(R) = D(R) ( r̂ · σ ) , (19.104)

we see that when this equation operates on a spinor χ±(θ, φ), we find:

( r̂′ · σ )
{

D(R) χ±(θ, φ)
}

= ±
{

D(R) χ±(θ, φ)
}

, (19.105)

so
{

D(R) χ±(θ, φ)
}

is an eigenvector of ( r̂′ · σ ) with eigenvalue ±1. That is, the transformation rule for
spinors is:

χ±(θ′, φ′) = D(R) χ±(θ, φ) . (19.106)

Writing this out explicitly for χ+, we have:
(

χ′+,+

χ′+,−

)
=

(
a b
c d

) (
χ+,+

χ+,−

)
=

(
aχ+,+ + b χ+,−
c χ+,+ + d χ+,−

)
. (19.107)

So z∗+, defined by Eq. (19.101), transforms under rotation of the coordinate system as:

z′ ∗+ =
a z∗+ + b

c z∗+ + d
, (19.108)

in agreement with linear fractional transformation we claimed in Eq. (19.67). It is remarkable that Kline
and Cayley discovered this two-dimensional representation of rotations using quaternions in the nineteenth
century, long before quantum mechanics was invented.
Remark 32. Given a 2×2 unitary operator D(R), and the Cartan mapping (19.87), we can find the rotation
matrix R associated with D(R) by noting:

x′i =
1
2
Tr[σi V (r′) ] =

1
2
Tr[σi D(R) V (r) D†(R) ] =

1
2
Tr[σi D(R)σj D†(R) ]xj = Rij xj , (19.109)

where
Rij =

1
2
Tr[σi D(R) σj D†(R) ] . (19.110)

Schwinger [14] used (19.110) to show that for every D(R) ∈ SU(2), R ∈ SO(3).
Remark 33. We have just shown that

D(R) xj σj D†(R) = x′i σi = Rij xj σi , (19.111)

for arbitrary xi. So
D(R) σj D†(R) = σi Rij . (19.112)

Inverting this expression gives:
D†(R)σi D(R) = Rij σj . (19.113)

That is, the matrices σi are rotated in the reverse way by the transformation.
Remark 34. We have show here that we can equally use these two-dimensional unitary, unimodular matrices
to describe the relative orientation of two coordinate systems. The set of all such matrices U(R) form
a group called SU(2), the special group of two-dimensional unitary matrices. Theorem 34 demonstrates
that for every rotation matrix R, there is a unitary matrix U(R) that provides the same relation between
components of vectors in the two systems. The two groups, O+(3) and SU(2), are said to be isomorphic:
O+(3) ∼ SU(2). We emphasize again that the above discussion is completely classical.
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Exercise 53. Compute det[V (r) ] and show that det[V (r′) ] = det[ V (r) ].

Exercise 54. Using the definition (19.89) for D(R), show that D(R′) D(R) = D(R′R).

Exercise 55. Show that for the Euler angle parameterization, the D(R) matrix is given by:

D(γ, β, α) = Dz(γ)Dy(β)Dz(α) = eiσzγ/2 eiσyβ/2 eiσzα/2

=
(

ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
,

(19.114)

as stated in Eq. (19.92).

Exercise 56. Using the sequential matrix construction for D(γ, β, α) given in Exercise 55, and the Euler
angle rotation matrix R(γ, β, α) = Rz(γ)Ry(β) Rz(α), prove (19.113) directly, and thus Theorem 34 for the
Euler angle representation of rotations.

19.3 Rotations in quantum mechanics

In quantum mechanics, symmetry transformations, such as rotations of the coordinate system, are repre-
sented by unitary transformations of vectors in the Hilbert space. Unitary representations of the rotation
group are faithful representations. This means that the composition rule, R′′ = R′R of the group is pre-
served by the unitary representation, without any phase factors.6 That is: U(R′′) = U(R′)U(R). We also
have U(1) = 1 and U−1(R) = U†(R) = U(R−1). For infinitesimal rotations, we write the classical rotational
matrix as in Eq. (19.52):

Rij(n̂,∆θ) = δij + εijkn̂k ∆θ + · · · , (19.115)

which we abbreviate as R = 1 + ∆θ + · · · . We write the infinitesimal unitary transformtion as:

UJ(1 + ∆θ) = 1 + i niJi ∆θ/! + · · · , (19.116)

where Ji is the Hermitian generator of the transformation. We will show in this section that the set of
generators Ji, for i = 1, 2, 3, transform under rotations in quantum mechanics as a pseudo-vector and that
it obeys the commutation relations we assumed in Eq. (19.1) at the beginning of this chapter. The factor of
! is inserted here so that Ji can have units of classical angular momentum, and is the only way that makes
UJ(R) into a quantum operator. Now let us consider the combined transformation:

U†
J(R) UJ(1+∆θ′) UJ(R) = UJ(R−1) UJ(1+∆θ′) UJ(R) = UJ( R−1 ( 1+∆θ′ )R ) = UJ(1+∆θ′′) . (19.117)

We first work out the classical transformation:

1 + ∆θ′′ + · · · = R−1 ( 1 + ∆θ′ ) R = 1 + R−1 ∆θ′R + · · · (19.118)

That is
εijkn̂k ∆θ′′ = εi′j′k′ Ri′i Rj′j n̂k′ ∆θ′ . (19.119)

Now using the relation:

det[R ] εijk = εi′j′k′ Ri′i Rj′j Rk′k , or det[R ] εijk Rk′k = εi′j′k′ Ri′i Rj′j . (19.120)

Inserting this result into (19.119) gives the relation:

n̂k ∆θ′′ = det[ R ]Rk′k n̂k′ ∆θ′ (19.121)
6This is not the case for the full Galilean group, where there is a phase factor involved (see Chapter 7 and particularly

Section 7.5).
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So from (19.117), we find:

1 + i n̂jJj ∆θ′′/! + · · · = U†
J(R)

{
1 + i n̂iJi ∆θ′/! + · · ·

}
UJ(R)

= 1 + i U†
J(R)Ji UJ(R) n̂i ∆θ′/! + · · · ,

(19.122)

or
U†

J(R) Ji UJ(R) n̂i∆θ′ = n̂jJj ∆θ′′ = det[ R ]Rij Jj n̂i ∆θ′ . (19.123)

Comparing coefficients of n̂i ∆θ′ on both sides of this equation, we find:

U†
J(R) Ji UJ(R) = det[R ]Rij Jj , (19.124)

showing that under rotations, the generators of rotations Ji transform as pseudo-vectors. For ordinary
rotations det[ R ] = +1; whereas for Parity or mirror inversions of the coordinate system det[R ] = −1. We
restrict ourselves here to ordinary rotations. Iterating the infinitesimal rotation operator (19.118) gives the
finite unitary transformation:

UJ(n̂, θ) = ei n̂·J θ/! , R )→ (n̂, θ) . (19.125)

Further expansion of U(R) in Eq. (19.124) for infinitesimal R = 1 + ∆θ + · · · gives:
{

1− i n̂jJj ∆θ/! + · · ·
}

Ji

{
1 + i n̂jJj ∆θ/! + · · ·

}
=

{
δij + εijkn̂k ∆θ + · · ·

}
Jj . (19.126)

Comparing coefficients of n̂j ∆θ on both sides of this equation gives the commutation relations for the angular
momentum generators:

[Ji, Jj ] = i! εijk Jk . (19.127)

This derivation of the properties of the unitary transformations and generators of the rotation group parallels
that of the properties of the full Galilean group done in Chapter 7.

Remark 35. When j = 1/2 we can put J = S = !σ/2, so that the unitary rotation operator is given by:

US(n̂, θ) = ein̂·S/! = ein̂·σ/2 , (19.128)

which is the same as the unitary operator, Eq. (G.131), which we used to describe classical rotations in the
adjoint representation.

Exercise 57. Suppose the composition rule for the unitary representation of the rotation group is of the
form:

U(R′)U(R) = eiφ(R′,R) U(R′R) , (19.129)

where φ(R′, R) is a phase which may depend on R and R′. Using Bargmann’s method (see Section 7.2.1),
show that the phase φ(R′, R) is a trivial phase, and can be absorbed into the overall phase of the unitary
transformation. This exercise shows that the unitary representation of the rotation group is faithful.

Now we want to find relations between eigenvectors | j,m 〉 angular momentum in two frames related by
a rotation. So let | j, m 〉 be eigenvectors of J2 and Jz in the Σ frame and | j, m 〉′ be eigenvectors of J2 and
Jz in the Σ′ frame. We first note that the square of the total angular momentum vector is invariant under
rotations:

U†
J(R) J2 UJ(R) = J2 , (19.130)

so the total angular momentum quantum numbers for the eigenvectors must be the same in each frame,
j′ = j. From (19.124), Ji transforms as follows (in the following, we consider the case when det[ R ] = +1):

U†
J(R) Ji UJ(R) = Ri,j Jj = J ′i , (19.131)
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So multiplying (19.131) on the left by U†
J(R), setting i = z, and operating on the eigenvector | j, m 〉 defined

in frame Σ, we find:

Jz′
{

U†
J(R) | j, m 〉

}
= U†

J(R) Jz | j, m 〉 = ! m
{

U†
J(R) | j, m 〉

}
, (19.132)

from which we conclude that U†
J(R) | j,m 〉 is an eigenvector of Jz′ with eigenvalue ! m. That is:

| j, m 〉′ = U†
J(R) | j, m 〉 =

+j∑

m′=−j

| j,m′ 〉 〈 j, m′ |U†
J(R) | j, m 〉 =

+j∑

m′=−j

D(j) ∗
m,m′(R) | j, m′ 〉 , (19.133)

where we have defined the D-functions, which are angular momentum matrix elements of the rotation
operator, by:

Definition 36 (D-functions). The D-functions are the matrix elements of the rotation operator, and are
defined by:

D(j)
m,m′(R) = 〈 j, m |UJ(R) | j,m′ 〉 = ′〈 j, m | j, m′ 〉 = ′〈 j, m |UJ(R) | j, m′ 〉′ . (19.134)

The D-function can be computed in either the Σ or Σ′ frames. Eq. (19.133) relates eigenvectors of the
angular momentum in frame Σ′ to those in Σ. Note that the matrix D(j)

m,m′(R) is the overlap between the
state | j, m 〉′ in the Σ′ frame and | j,m 〉 in the Σ frame. The row’s of this matrix are the adjoint eigenvectors
of J ′z in the Σ frame, so that the columns of the adjoint matrix, D(j) ∗

m′,m(R) are the eigenvectors of J ′z in the
Σ frame.

For infinitesimal rotations, the D-function is given by:

D(j)
m,m′(n̂,∆θ) = 〈 j, m |UJ(n̂,∆θ) | j, m′ 〉 = 〈 j,m |

{
1 +

i

! n̂ · J∆θ + · · ·
}
| j, m′ 〉

= δm,m′ +
i

! 〈 j, m | n̂ · J | j, m′ 〉∆θ + · · ·
(19.135)

Exercise 58. Find the first order matrix elements of D(j)
m,m′(n̂,∆θ) for n̂ = êz and n̂ = êx ± iêy.

19.3.1 Rotations using Euler angles

Consider the sequential rotations Σ → Σ′ → Σ′′ → Σ′′′, described by the Euler angles defined in Sec-
tion 19.2.3. The unitary operator in quantum mechanics for this classical transformation is then given by
the composition rule:

UJ(γ, β, α) = UJ(êz, γ) UJ(êy, β) UJ(êz, α) = eiJzγ/! eiJyβ/! eiJzα/! . (19.136)

So the angular momentum operator Ji transforms according to (det[ R ] = 1):

U†
J(γ, β, α) Ji UJ(γ, β, α) = Rz ij(γ) Ry jk(β) Rz kl(α) Jl = Ril(γ, β, α)Jl ≡ J ′′′i , (19.137)

where Ril(γ, β, α) is given by Eq. (19.63). Again, multiplying on the right by U†
J(γ, β, α), setting i = z, and

operating on the eigenvector | j, m 〉 defined in frame Σ, we find:

Jz′′′
{

U†
J(γ, β, α) | j, m 〉

}
= U†

J(γ, β, α) Jz | j,m 〉 = ! m
{

U†
J(γ, β, α) | j,m 〉

}
. (19.138)

So we conclude here that U†
J(α, β, γ) | j,m 〉 is an eigenvector of Jz′′′ with eigenvalue ! m. That is:

| j,m 〉′′′ = U†
J(γ, β, α) | j, m 〉

=
+j∑

m′=−j

| j, m′ 〉 〈 j, m′ |U†
J(γ, β, α) | j, m 〉 =

+j∑

m′=−j

D(j) ∗
m,m′(γ, β, α) | j,m′ 〉 .

(19.139)
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where the D-matrix is defined by:

D(j)
m,m′(γ, β, α) = 〈 j,m |UJ(γ, β, α) | j, m′ 〉 = 〈 j,m | eiJzγ/! eiJyβ/! eiJzα/! | j, m′ 〉 (19.140)

We warn the reader that there is a great deal of confusion, especially in the early literature, concerning
Euler angles and representation of rotations in quantum mechanics. From our point of view, all we need
is the matrix representation provided by Eq. (19.63) and the composition rule for unitary representation
of the rotation group. Our definition of the D-matrices, Eq. (19.140), agrees with the 1996 printing of
Edmonds[2][Eq. (4.1.9) on p. 55]. Earlier printings of Edmonds were in error. (See the articles by Bouten
[15] and Wolf [16].)

19.3.2 Properties of D-functions

Matrix elements of the rotation operator using Euler angles to define the rotation are given by:

D(j)
m,m′(γ, β, α) = 〈 jm |UJ(γ, β, α) | jm′ 〉 = ei(mγ+m′α) d(j)

m,m′(β) , (19.141)

where dj
m,m′(β) is real and given by:7

d(j)
m,m′(β) = 〈 jm | eiβJy/! | jm′ 〉 .

We derive an explicit formula for the D-matrices in Theorem 58 in Section G.5 using Schwinger’s methods,
where we find:

D(j)
m,m′(R) =

√
(j + m)! (j −m)! (j + m′) (j −m′)

×
j+m∑

s=0

j−m∑

r=0

δs−r,m−m′

(
D+,+(R)

)j+m−s (
D+,−(R)

)s (
D−,+(R)

)r (
D−,−(R)

)j−m−r

s! (j + m− s)! r! (j −m− r)!
, (19.142)

where elements of the matrix D(R), with rows an columns labeled by ±, are given by any of the parameter-
izations:

D(R) =
(

a b
c d

)
= cos(θ/2) + i (n̂ · σ) sin(θ/2)

=
(

ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
.

(19.143)

Using Euler angles, this gives the formula:

d(j)
m,m′(β) =

√
(j + m)! (j −m)! (j + m′) (j −m′)

×
∑

σ

(−)j−σ−m
(
cos(β/2)

)2σ+m+m′ (
sin(β/2)

)2j−2σ−m−m′

σ! (j − σ −m)! (j − σ −m′)! (σ + m + m′)!
. (19.144)

From this, it is easy to show that:

d(j)
m,m′(β) = d(j) ∗

m,m′(β) = d(j)
m′,m(−β) = (−)m−m′

d(j)
−m,−m′(β) = (−)m−m′

d(j)
m′,m(β) . (19.145)

In particular, in Section G.5, we show that:

d(j)
m,m′(π) = (−)j−m δm,−m′ , and d(j)

m,m′(−π) = (−)j+m δm,−m′ . (19.146)

7This is the reason in quantum mechanics for choosing the second rotation to be about the y-axis rather than the x-axis.
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The D-matrix for the inverse transformation is given by:

D(j)
m,m′(R−1) = D(j)∗

m′,m(R) = (−)m−m′
D(j)
−m,−m′(R) (19.147)

For Euler angles, since d(j)
m,m′(β) is real, this means that:

D(j)∗
m,m′(α, β, γ) = D(j)

m′,m(−γ,−β,−α) = D(j)
m,m′(−α, β,−γ) = (−)m−m′

D(j)
−m,−m′(α, β, γ) . (19.148)

Exercise 59. Show that the matrix d(1)(β) for j = 1/2, is given by:

d(1/2)(β) = eiβσy/2 = cos(β/2) + iσy sin(β/2) =
(

cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
,

so that
D(1/2)(γ, β, α) =

(
ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
, (19.149)

which agrees with Eq. (13.13) if we put γ = 0, β = θ, and α = φ.

Exercise 60. Show that the matrix d(1)(β) for j = 1, is given by:

d(1)(β) = eiβSy =




(1 + cos β)/2 sin β/

√
2 (1− cos β)/2

− sinβ/
√

2 cos β sinβ/
√

2
(1− cos β)/2 − sinβ/

√
2 (1 + cos β)/2



 . (19.150)

Use the results for Sy in Eq. (19.10) and expand the exponent in a power series in iβSy for a few terms
(about four or five terms should do) in order to deduce the result directly.

Remark 36. From the results in Eq. (19.150), we note that:

Y1,m(θ, φ) =
√

3
4π






− sin θ e+iφ/
√

2 , for m = +1,
cos θ , for m = 0,

+ sinφ e−iφ/
√

2 , for m = −1.
(19.151)

so

D(1)
0,m(γ, β, α) =

√
4π

3
Y1,m(β, α) , and D(1)

m,0(γ, β, α) = (−)m

√
4π

3
Y1,m(β, γ) , (19.152)

in agreement with Eqs. (19.162) and (19.163).

19.3.3 Rotation of orbital angular momentum

When the angular momentum has a coordinate representation so that J = L = R×P,

U†
L(γ, β, α)Xi UL(γ, β, α) = Rij(γ, β, α) Xj = X ′′′

i , (19.153)

or
Xi UL(γ, β, α) = UL(γ, β, α) X ′′′

i , (19.154)

so that:
Xi

{
UL(γ, β, α) | r 〉

}
= UL(γ, β, α) X ′′′

i | r 〉 = x′′′i

{
UL(γ, β, α) | r 〉

}
, (19.155)

which means that UL(γ, β, α) | r 〉 is an eigenvector of Xi with eigenvalue x′′′i = Rij(γ, β, α)xj . That is:

| r′′′ 〉 = UL(γ, β, α) | r 〉 . (19.156)
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The spherical harmonics of Section 19.1.2 are defined by:

Y",m(θ, φ) = 〈 r̂ | ),m 〉 = 〈 θ, φ | ),m 〉 . (19.157)

Now let the point P be on the unit circle so that the coordinates of this point is described by the polar
angles (θ, φ) in frame Σ and the polar angles (θ′, φ′) in the rotated frame Σ′. So on this unit circle,

Y",m(θ, φ) = 〈 θ, φ | ),m 〉 = 〈 θ′′′, φ′′′ |UL(γ, β, α) | ),m 〉 = 〈 θ′′′, φ′′′ | ),m 〉′′′ = Y ′′′",m(θ′′′, φ′′′)

=
+"∑

m′=−"

〈 θ′′′, φ′′′ | ),m′ 〉 〈 ),m′ |UL(γ, β, α) | ),m 〉 =
+"∑

m′=−"

Y",m′(θ′′′, φ′′′) D(")
m′,m(γ, β, α) , (19.158)

where
D(")

m,m′(γ, β, α) = 〈 ),m |UL(γ, β, α) | ),m′ 〉 . (19.159)

As a special case, let us evaluate Eq. (19.158) at a point P0 = (x′′′, y′′′, z′′′) = (0, 0, 1) on the unit circle on
the z′′′-axis in the Σ′′′, or θ′′′ = 0. However Eq. (19.23) states that:

Y",m′(0, φ′′′) =
√

2) + 1
4π

δm′,0 , (19.160)

so only the m′ = 0 term in Eq. (19.158) contributes to the sum and so evaluated at point P0, Eq. (19.158)
becomes:

Y",m(θ, φ) =
√

2) + 1
4π

D(")
0,m(γ, β, α) . (19.161)

The point P in the Σ frame is given by Eqs. (19.65). So for this point, the polar angles of point P in the Σ
frame are: θ = β and φ = α, and Eq. (19.161) gives the result:

D(")
0,m(γ, β, α) =

√
4π

2) + 1
Y",m(β, α) = C",m(β, α) . (19.162)

By taking the complex conjugate of this expression and using properties of the spherical harmonics, we also
find:

D(")
m,0(γ, β, α) = (−)m

√
4π

2) + 1
Y",m(β, α) = C∗",−m(β, α) . (19.163)

As a special case, we find:
D(")

0,0(γ, β, α) = P"(cos β) , (19.164)

where P"(cos β) is the Lagrendre polynomial of order ).

Exercise 61. Prove Eq. (19.163).

19.3.4 Sequential rotations

From the general properties of the rotation group, we know that U(R′R) = U(R′) U(R). If we describe the
rotations by Euler angles, we write the combined rotation as:

R(γ′′, β′′, α′′) = R(γ′, β′, α′) R(γ, β, α) . (19.165)

The unitary operator for this sequential transformation is then given by:

UJ(γ′′, β′′, α′′) = UJ(γ′, β′, α′) UJ(γ, β, α) . (19.166)
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So the D-functions for this sequential rotation is given by matrix elements of this expression:

D(j)
m,m′′(γ′′, β′′, α′′) =

+j∑

m′=−j

D(j)
m,m′(γ′, β′, α′) D(j)

m′,m′′(γ, β, α) . (19.167)

We can derive the addition theorem for spherical harmonics by considering the sequence of transforma-
tions given by:

R(γ′′, β′′, α′′) = R(γ′, β′, α′) R−1(γ, β, α) = R(γ′, β′, α′) R(−α,−β,−γ) . (19.168)

The D-functions for this sequential rotation for integer j = ), is given by:

D(")
m,m′′(γ′′, β′′, α′′) =

+"∑

m′=−"

D(")
m,m′(γ′, β′, α′) D(")

m′,m′′(−α,−β,−γ) . (19.169)

Next, we evaluate Eq. (19.169) for m = m′′ = 0. Using Eqs. (19.162), (19.163), and (19.164), we find:

P"(cos β′′) =
4π

2) + 1

+"∑

m′=−"

Y",m(β′, α′)Y ∗",m(β, α) . (19.170)

Here (β, α) and (β′, α′) are the polar angles of two points on the unit circle in a fixed coordinate frame. In
order to find cos β′′, we need to multiply out the rotation matrices given in Eq. (19.168). Let us first set
(β, α) = (θ, φ) and (β′, α′) = (θ′, φ′), and set γ and γ′ to zero. Then we find:

R(γ′′, β′′, α′′) = Ry(θ′)Rz(φ′) Rz(−φ) Ry(−θ) = Ry(θ′) Rz(φ′ − φ) Ry(−θ)

=




cos θ′ 0 − sin θ′

0 1 0
sin θ′ 0 cos θ′








cos φ′′ sinφ′′ 0
− sinφ′′ cos φ′′ 0

0 0 1








cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ





=




sin θ sin θ′ + cos θ cos θ′ cos φ′′ cos θ′ sinφ′′ − sin θ′ cos θ + cos θ′ cos θ cos φ′′

− cos θ sinφ′′ cos φ′′ − sin θ sinφ′′

− cos θ′ sin θ + sin θ′ cos θ cos φ′′ sin θ′ sinφ′′ cos θ′ cos θ + sin θ′ sin θ cos φ′′



 . (19.171)

where we have set φ′′ = φ′ − φ. We compare this with the general form of the rotation matrix given in
Eq. (19.63):

R(γ′′, β′′, α′′) =



cos γ′′ cos β′′ cos α′′ − sin γ′′ sinα′′, cos γ′′ cos β′′ sinα′′ + sin γ′′ sinα′′, − cos γ′′ sinβ′′

− sin γ′′ cos β′′ cos α′′ − cos γ′′ sinα′′, − sin γ′′ cos β′′ sinα′′ + cos γ′′ cos α′′, sin γ′′ sinβ′′

sinβ′′ cos α′′, sinβ′′ sinα′′, cos β′′



 .

(19.172)

Comparing this with Eq. (19.171), we see that the (3, 3) component requires that:

cos β′′ = cos θ′ cos θ + sin θ′ sin θ cos φ′′ . (19.173)

It is not easy to find the values of α′′ and γ′′. We leave this problem to the interested reader.

Exercise 62. Find α′′ and γ′′ by comparing Eqs. (19.171) and (19.172), using the result (19.173).

So Eq. (19.170) becomes:

P"(cos γ) =
4π

2) + 1

+"∑

m=−"

Y",m(θ′, φ′) Y ∗",m(θ, φ) , (19.174)

where cos γ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). Eq. (19.174) is called the addition theorem of spherical
harmonics.



19.4. ADDITION OF ANGULAR MOMENTUM 259

19.4 Addition of angular momentum

If a number of angular momentum vectors commute, the eigenvectors of the combined system can be written
as a direct product consisting of the vectors of each system:

| j1,m1, j2,m2, . . . , jN ,mN 〉 = | j1,m1 〉 ⊗ | j2,m2 〉 ⊗ · · · ⊗ | jN ,mN 〉 . (19.175)

This vector is an eigenvector of J2
i and Ji,z for i = 1, 2, . . . , N . It is also an eigenvector of the total z-

component of angular momentum: Jz | j1,m1, j2,m2, . . . , jN ,mN 〉 = M | j1,m1, j2,m2, . . . , jN ,mN 〉, where
M = m1 + m2 + · · ·+ mN . It is not, however, an eigenvector of the total angular momentum J2, defined by

J2 = J · J , J =
N∑

i=1

Ji . (19.176)

We can find eigenvectors of the total angular momentum of any number of commuting angular momentum
vectors by coupling them in a number of ways. This coupling is important in applications since very often
the total angular momentum of a system is conserved. We show how to do this coupling in this section. We
start with the coupling of the eigenvectors of two angular momentum vectors.

19.4.1 Coupling of two angular momenta

Let J1 and J2 be two commuting angular moment vectors: [J1 i, J2 j ] = 0, with [J1 i, J1 j ] = iεijkJ1 k and
[J2 i, J12,j ] = iεijkJ2 k. One set of four commuting operators for the combined system is the direct product
set, given by: (J2

1 , J1 z, J2
2 , J2,z), and with eigenvectors:

| j1,m1, j2,m2 〉 . (19.177)

However, we can find another set of four commuting operators by defining the total angular momentum
operator:

J = J1 + J2 , (19.178)

which obeys the usual angular momentum commutation rules: [ Ji, Jj ] = iεijkJk, with [ J2, J2
1 ] = [J2, J2

2 ] =
0. So another set of four commuting operators for the combined system is: (J2

1 , J2
2 , J2, Jz), with eigenvectors:

| (j1, j2), j,m 〉 . (19.179)

Either set of eigenvectors are equivalent descriptions of the combined angular momentum system, and so
there us a unitary operator relating them. Matrix elements of this operator are called Clebsch-Gordan
coefficients, or vector coupling coefficients, which we write as:

| (j1, j2) j, m 〉 =
∑

m1,m2

| j1,m1, j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j, m 〉 , (19.180)

or in the reverse direction:

| j1,m1, j2,m2 〉 =
∑

j,m

| (j1, j2), j,m 〉〈 (j1, j2) j, m | j1,m1, j2,m2 〉 . (19.181)

Since the basis states are orthonormal and complete, Clebsch-Gordan coefficients satisfy:
∑

m1,m2

〈 (j1, j2) j,m | j1,m1, j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j′,m′ 〉 = δj,j′ δm,m′ ,

∑

j,m

〈 j1,m1, j2,m2 | (j1, j2) j, m 〉〈 (j1, j2) j,m | j1,m′
1, j2,m

′
2 〉 = δm1,m′

1
δm2,m′

2
.

(19.182)
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In addition, a phase convension is adopted so that the phase of the Clebsch-Gordan coefficient 〈 j1, j1, j2, j−
j1 | (j1, j2) j,m 〉 is taken to be zero, i.e. the argument is +1. With this convention, all Clebsch-Gordan
coefficients are real.

Operating on (19.180) by Jz = J1 z + J2 z, gives

m | (j1, j2) j, m 〉 =
∑

m1,m2

(m1 + m2 ) | j1,m1, j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j, m 〉 , (19.183)

or
( m−m1 −m2 ) 〈 j1,m1, j2,m2 | (j1, j2) j, m 〉 = 0 , (19.184)

so that Clebsch-Gordan coefficients vanish unless m = m1 + m2. Operating on (19.180) by J± = J1± + J2±
gives two recursion relations:

A(j,∓m) 〈 j1,m1, j2,m2 | (j1, j2) j, m ± 1 〉 =
A(j1,±m1) 〈 j1,m1 ∓ 1, j2,m2 | (j1, j2) j, m 〉+ A(j2,±m2) 〈 j1,m1, j2,m2 ∓ 1 | (j1, j2) j, m 〉 , (19.185)

where A(j, m) =
√

(j + m)(j −m + 1) = A(j, 1 ∓ m). The range of j is determined by noticing that
〈 j1,m1, j − j1,m2 | (j1, j2) j, m 〉 vanished unless −j2 ≤ j − j1 ≤ j2 or j1 − j2 ≤ j ≤ j1 + j2. Similarly
〈 j1, j − j2, j2, j2 | (j1, j2) j, m 〉 vanished unless −j1 ≤ j − j2 ≤ j1 or j2 − j1 ≤ j ≤ j1 + j2, from which we
conclude that

| j1 − j2 | ≤ j ≤ j1 + j2 , (19.186)

which is called the triangle inequality. One can find a closed form for the Clebsch-Gordan coefficients by
solving the recurrence formula, Eq. (19.185). The result [5][p. 78], which is straightforward but tedious is:

〈 j1,m1, j2,m2 | (j1, j2) j, m 〉

= δm,m1+m2

[
(2j + 1) (j1 + j2 − j)! (j1 −m1)! (j2 −m2)! (j −m)! (j + m)!

(j1 + j2 + j + 1)! (j + j1 − j2)! (j + j2 − j1)! (j1 + m1)! (j2 + m2)!

]1/2

×
∑

t

(−)j1−m1+t

[
(j1 + m1 + t)! (j + j2 −m1 − t)!

t! (j −m− t)! (j1 −m1 − t)! (j2 − j + m1 + t)!

]
. (19.187)

This form for the Clebsch-Gordan coefficient is called “Racah’s first form.” A number of other forms of the
equation can be obtained by substitution. For numerical calculatins for small j, it is best to start with the
vector for m = −j and then apply J+ to obtain vectors for the other m-values, or start with the vector for
m = +j and then apply J− to obtain vectors for the rest of the m-values. Orthonormalization requirements
between states with different value of j with the same value of m can be used to further fix the vectors. We
illustrate this method in the next example.

Example 31. For j1 = j2 = 1/2, the total angular momentum can have the values j = 0, 1. For this
example, let us simplify our notation and put | 1/2,m, 1/2,m′ 〉 )→ |m,m′ 〉 and | (1/2, 1/2) j, m 〉 )→ | j,m 〉.
Then for j = 1 and m = 1, we start with the unique state:

| 1, 1 〉 = | 1/2, 1/2 〉 . (19.188)

Our convention is that the argument of this Clebsch-Gordan coefficient is +1. Apply J− to this state:

J− | 1, 1 〉 = J1− | 1/2, 1/2 〉+ J2− | 1/2, 1/2 〉 , (19.189)

from which we find:
| 1, 0 〉 =

1√
2

(
| − 1/2, 1/2 〉+ | 1/2,−1/2 〉

)
. (19.190)
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Applying J− again to this state gives:

| 1,−1 〉 = | − 1/2,−1/2 〉 . (19.191)

For the j = 0 case, we have:
| 0, 0 〉 = α | 1/2,−1/2 〉+ β | − 1/2, 1/2 〉 . (19.192)

Applying J− to this state gives zero on the left-hand-side, so we find that β = −α. Since our convention is
that the argument of α is +1, we find:

| 0, 0 〉 =
1√
2

(
| 1/2,−1/2 〉 − | − 1/2, 1/2 〉

)
. (19.193)

As a check, we note that (19.193) is orthogonal to (19.190). We summarize these familiar results as follows:

| j,m 〉 =






(
| 1/2,−1/2 〉 − | − 1/2, 1/2 〉

)
/
√

2 , for j = m = 0,
| 1/2, 1/2 〉 , for j = 1, m = +1,(
| 1/2,−1/2 〉+ | − 1/2, 1/2 〉

)
/
√

2 , for j = 1, m = 0,
| − 1/2,−1/2 〉 , for j = 1, m = −1.

(19.194)

Exercise 63. Work out the Clebsch-Gordan coefficients for the case when j1 = 1/2 and j2 = 1.

Tables of Clebsch-Gordan coefficients can be found on the internet. We reproduce one of them from the
Particle Data group in Table 19.1.8 More extensive tables can be found in the book by Rotenberg, et.al. [17],
and computer programs for numerically calculating Clebsch-Gordan coefficients, 3j-, 6j-, and 9j-symbols are
also available. Important symmetry relations for Clebsch-Gordan coefficients are the following:

1. Interchange of the order of (j1, j2) coupling:

〈 j2,m2, j1,m1 | (j2, j1) j3,m3 〉 = (−)j1+j2−j3 〈 j1,m1, j2,m2 | (j1, j2) j3,m3 〉 . (19.195)

2. Cyclic permutation of the coupling [(j1, j2) j3]:

〈 j2,m2, j3,m3 | (j2, j3) j1,m1 〉 = (−)j2−m2

√
2j1 + 1
2j3 + 1

〈 j1,m1, j2,−m2 | (j1, j2) j3,m3 〉 , (19.196)

〈 j3,m3, j1,m1 | (j3, j1) j2,m2 〉 = (−)j1+m1

√
2j2 + 1
2j3 + 1

〈 j1,−m1, j2,m2 | (j1, j2) j3,m3 〉 . (19.197)

3. Reversal of all m values:

〈 j1,−m1, j2,−m2 | (j1, j2) j3,−m3 〉 = (−)j1+j2−j3 〈 j1,m1, j2,m2 | (j1, j2) j3,m3 〉 . (19.198)

Some special values of the Clebsch-Gordan coefficients are useful to know:

〈 j, m, 0, 0 | (j, 0) j, m 〉 = 1 , 〈 j, m, j,m′ | (j, j) 0, 0 〉 = δm,−m′
(−)j−m

√
2j + 1

. (19.199)

The symmetry relations are most easily obtained from the simpler symmetry relations for 3j-symbols, which
are defined below, and proved in Section G.6 using Schwinger’s methods.

8The sign convensions for the d-functions in this table are those of Rose[6], who uses an active rotation. To convert them to
our conventions put β → −β.
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34. Clebsch-Gordan coefficients 010001-1

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
1 =

√
3
4π

cos θ

Y 1
1 = −

√
3
8π

sin θ eiφ

Y 0
2 =

√
5
4π

(3
2

cos2 θ − 1
2

)

Y 1
2 = −

√
15
8π

sin θ cos θ eiφ

Y 2
2 =

1
4

√
15
2π

sin2 θ e2iφ

Y −m
" = (−1)mY m∗

" 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d "

m,0 =
√

4π

2# + 1
Y m

" e−imφ

d j
m′,m = (−1)m−m′

d j
m,m′ = d j

−m,−m′ d 1
0,0 = cos θ d

1/2
1/2,1/2 = cos

θ

2

d
1/2
1/2,−1/2 = − sin

θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1 =

1 − cos θ

2

d
3/2
3/2,3/2 =

1 + cos θ

2
cos

θ

2

d
3/2
3/2,1/2 = −

√
3
1 + cos θ

2
sin

θ

2

d
3/2
3/2,−1/2 =

√
3
1 − cos θ

2
cos

θ

2

d
3/2
3/2,−3/2 = −1 − cos θ

2
sin

θ

2

d
3/2
1/2,1/2 =

3 cos θ − 1
2

cos
θ

2

d
3/2
1/2,−1/2 = −3 cos θ + 1

2
sin

θ

2

d 2
2,2 =

(1 + cos θ

2

)2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1 = −1− cos θ

2
sin θ

d 2
2,−2 =

(1 − cos θ

2

)2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√
3
2

sin θ cos θ

d 2
1,−1 =

1 − cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3

2
cos2 θ − 1

2

)

+1
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5/2
+3/2

3/2
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1/5
4/5
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.

Table 19.1: Table of Clebsch-Gordan coefficients, spherical harmonics, and d-functions.
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3j symbols

Clebsch-Gordan coefficients do not possess simple symmetry relations upon exchange of the angular momen-
tum quantum numbers. 3-j symbols which are related to Clebsch-Gordan coefficients, have better symmetry
properties. They are defined by (Edmonds [2]):

(
j1 j2 j3
m1 m2 m3

)
=

(−)j1−j2−m3

√
2j3 + 1

〈 j1,m1, j2,m2 | (j1, j2) j3,−m3 〉 . (19.200)

In terms of 3j-symbols, the orthogonality relations (19.182) become:

(2j3 + 1)
∑

m1,m2

(
j1 j2 j3
m1 m2 m3

) (
j1 j2 j′3
m1 m2 m′

3

)
= δj3,j′

3
δm3,m′

3
,

∑

j3,m3

(2j3 + 1)
(

j1 j2 j3
m1 m2 m3

) (
j1 j2 j3
m′

1 m′
2 m3

)
= δm1,m′

1
δm2,m′

2
.

(19.201)

Symmetry properties of the 3j-symbols are particularly simple. They are:

1. The 3j-symbols are invariant under even (cyclic) permutation of the columns:
(

j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
. (19.202)

and are multiplied by a phase for odd permutations:
(

j2 j1 j3
m2 m1 m3

)
=

(
j3 j2 j1
m3 m2 m1

)
=

(
j1 j3 j2
m1 m3 m2

)
= (−)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (19.203)

2. For reversal of all m values:
(

j1 j2 j3
−m1 −m2 −m3

)
= (−)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (19.204)

The 3j-symbols vanish unless m1 + m2 + m3 = 0. For j3 = 0, the 3j-symbol is:
(

j j 0
m m′ 0

)
= δm,−m′

(−)j−m

√
2j + 1

. (19.205)

A few useful 3j-symbols are given in Table 19.2. More can be found in Edmonds [2][Table 2, p. 125] and
Brink and Satchler [18][Table 3, p. 36].

19.4.2 Coupling of three and four angular momenta

We write the direct product eigenvector for three angular momenta as:

| j1,m1, j2,m2, j3,m3 〉 = | j1,m1 〉 ⊗ | j2,m2 〉 ⊗ | j3,m3 〉 . (19.206)

This state is an eigenvector of J2
1 , J1 z, J2

2 , J2 z, and J2
3 , J3 z. If we want to construct eigenvectors of total

angular momentum J2 and Jz, where

J2 = J · J , J = J1 + J2 + J3 , (19.207)

there are three ways to do this: (1) couple J1 to J2 to get an intermediate vector J12 and then couple this
intermediate vector to J3 to get an eigenvector of J, (2) couple J2 to J3 to get J23 and then couple J1 to
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(
j j + 1/2 1/2
m −m− 1/2 1/2

)
= (−)j−m−1

√
j + m + 1

(2j + 1)(2j + 2)
(

j j 1
m −m− 1 1

)
= (−)j−m

√
2(j −m)(j + m + 1)
2j(2j + 1)(2j + 2)

(
j j 1
m −m 0

)
= (−)j−m m√

j(j + 1)(2j + 1)
(

j j + 1 1
m −m− 1 1

)
= (−)j−m

√
(j + m + 1)(j + m + 2)
(2j + 1)(2j + 2)(2j + 3)

(
j j + 1 1
m −m 0

)
= (−)j−m−1

√
2(j −m + 1)(j + m + 1)
(2j + 1)(2j + 2)(2j + 3)

Table 19.2: Algebric formulas for some 3j-symbols.

J23 to get J, or (3) couple J1 to J3 to get J13 and then couple J2 to J13 to get J. Keeping in mind that the
order of the coupling of two vectors is just a phase and not a different coupling scheme, it turns out that
this last coupling is just a combined transformation of the first two (see Eq. (19.214) below). So the first
two coupling schemes can be written as:

| (j1, j2) j12, j3, j,m 〉 =
∑

m1,m2,m3
m12

〈 j1,m1, j2,m2 | (j1, j2) j12,m12 〉 〈 j12,m12, j3,m3 | (j12, j3) j, m 〉

× | j1,m1, j2,m2, j3,m3 〉 ,

| j1 (j2, j3) j23, j,m 〉 =
∑

m1,m2,m3
m23

〈 j2,m2, j3,m3 | (j2, j3) j23,m23 〉 〈 j1,m1, j23,m23 | (j1, j23) j, m 〉

× | j1,m1, j2,m2, j3,m3 〉 .

(19.208)

The overlap between these two coupling vectors is independent of m and is proportional to the 6j-symbol:
{

j1 j2 j12
j3 j j23

}
=

(−)j1+j2+j3+j

√
(2j12 + 1) (2j23 + 1)

〈 (j1, j2) j12, j3, j,m | j1 (j2, j3) j23, j,m 〉

=
(−)j1+j2+j3+j

√
(2j12 + 1) (2j23 + 1)

∑

m1,m2,m3
m12,m23

〈 j1,m1, j2,m2 | (j1, j2) j12,m12 〉

× 〈 j12,m12, j3,m3 | (j12, j3) j, m 〉 〈 j2,m2, j3,m3 | (j2, j3) j23,m23 〉 〈 j1,m1, j23,m23 | (j1, j23) j,m 〉

(19.209)

Here m = m1 + m2 + m3. The 6j-symbols vanish unless (j1, j2, j12), (j2, j3, j23), (j12, j3, j), and (j1, j23, j)
all satisfy triangle inequalities. In terms of 3j-symbols, the 6j-symbol is given by the symmetric expression:

{
j1 j2 j3
j4 j5 j6

}
=

∑

all m

(−)
P

all(j+m)

×
(

j1 j2 j3
m1 m2 m3

) (
j1 j5 j6
−m1 m5 −m6

) (
j4 j2 j6
−m4 −m2 m6

) (
j4 j5 j3
m4 −m5 −m3

)
. (19.210)

Here, the sums over all m’s are restructed because the 3j-symbols vanish unless their m-values add to zero.
A number of useful relations between 3j and 6j-symbols follow from Eq. (19.210), and are tablulated by
Brink and Satchler [18][Appendix II, p. 141]. One of these which we will use later is:

√
(2) + 1)(2)′ + 1)

{
) )′ k
j′ j 1/2

} (
) )′ k
0 0 0

)
= (−)j+"+j′+"′+1

(
)′ ) k

−1/2 1/2 0

)
δ(), )′, k) , (19.211)
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{
j1 j2 j3
0 j3 j2

}
=

(−)j1+j2+j3
√

(2j2 + 1)(2j3 + 1)
,

{
j1 j2 j3
1/2 j3 − 1/2 j2 + 1/2

}
= (−)j1+j2+j3

√
(j1 + j3 − j2)(j1 + j2 − j3 + 1)
(2j2 + 1)(2j2 + 2)2j3(2j3 + 1)

,

{
j1 j2 j3
1/2 j3 − 1/2 j2 − 1/2

}
= (−)j1+j2+j3

√
(j2 + j3 − j1)(j1 + j2 + j3 + 1)

2j2(2j2 + 1)2j3(2j3 + 1)
,

{
j1 j2 j3
1 j3 j2

}
= 2 (−)j1+j2+j3 j1(j1 + 1)− j2(j2 + 1)− j3(j3 + 1)√

2j2(2j2 + 1)(2j2 + 2) 2j3(2j3 + 1)(2j3 + 2)
,

Table 19.3: Algebric formulas for some 6j-symbols.

where δ(), )′, k) = 1 if ) + )′ + k is even and (), )′, k) satisfy the triangle inequality, otherwise it is zero. The
6j-symbol is designed so as to maximize the symmetries of the coupling coefficient, as in the 3j-symbol. For
example, the 6j-symbol is invariant under any permutation of columns:

{
j1 j2 j3
j4 j5 j6

}
=

{
j2 j3 j1
j5 j6 j4

}
=

{
j3 j1 j2
j6 j4 j5

}
=

{
j2 j1 j3
j5 j4 j6

}
=

{
j1 j3 j2
j4 j6 j5

}
=

{
j3 j2 j1
j6 j5 j4

}
.

It is also invariant under exchange of the upper and lower elements of any two columns:
{

j1 j2 j3
j4 j5 j6

}
=

{
j4 j5 j3
j1 j2 j6

}
=

{
j4 j2 j6
j1 j5 j3

}
=

{
j1 j5 j6
j4 j2 j3

}
.

Some particular 6j-symbols are given in Table 19.3 Additional tables of 6j-symbols for values of j = 1
and 2 can be found in Edmonds [2][Table 5, p. 130]. Several relations between 6j-symbols are obtained by
consideration of the recoupling matrix elements. For example, since:

∑

j12

〈 j1 (j2, j3) j23, j | (j1, j2) j12, j3, j 〉 〈 (j1, j2) j12, j3, j | j1 (j2, j3) j′23, j 〉 = δj23,j′
23

, (19.212)

we have: ∑

j12

(2j12 + 1)(2j23 + 1)
{

j1 j2 j12
j3 j j23

} {
j1 j2 j12
j3 j j′23

}
= δj23,j′

23
. (19.213)

A similar consideration of
∑

j23

〈 (j1, j2) j12, j3, j | j1 (j2, j3) j23, j 〉 〈 j1 (j2, j3) j23, j | j2 (j3, j1) j31, j 〉

= 〈 (j1, j2) j12, j3, j | j2 (j3, j1) j31, j 〉 , (19.214)

gives:
∑

j23

(−)j23+j31+j12 (2j23 + 1)
{

j1 j2 j12
j3 j j23

} {
j2 j3 j23
j1 j j31

}
=

{
j3 j1 j31
j2 j j12

}
. (19.215)

Other important formula involving 6j-symbols can be found in standard references.
The coupling of four angular momenta is done in a similar way. Let us take the special case of two

particles with orbital angular momentum )1 and )2 and spin s1 and s2. Two important ways of coupling
these four angular momentum are the j-j coupling scheme:

| ()1, s1) j1, ()2, s2) j2, j,m 〉 =
∑

m!1 ,ms1 ,m!2 ,ms2
mj1 ,mj2

〈 )1,m"1 , s1,ms1 | ()1, s1) j1,m1 〉〈 )2,m"2 , s2,ms2 | ()2, s2) j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j, m 〉,

(19.216)
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and the )-s coupling scheme:

| ()1, )2) ), (s1, s2) s, j,m 〉 =
∑

m!1 ,m!2 ,ms1 ,ms2
m!,ms

〈 )1,m"1 , )2,m"2 | ()1, )2) ),m" 〉 〈 s1,ms1 , s2,ms2 | (s1, s2) s,ms 〉 〈 ),m", s, ms | (), s) j, m 〉 ,

(19.217)

The overlap between these two coupling schemes define the 9j-symbol:





)1 s1 j1
)2 s2 j2
) s j




 =
〈 ()1, s1) j1, ()2, s2) j2, j,m | ()1, )2) ), (s1, s2) s, j,m 〉√

(2j1 + 1) (2j2 + 1) (2) + 1) (2s + 1)
(19.218)

and is independent of the value of m. The rows and columns of the 9j-symbol must satisfy the triangle
inequality. From Eqs. (19.216) and (19.217), the 9j-symbol can be written in terms of sums over 6j-symbols
or 3j-symbols:






j11 j12 j13
j21 j22 j23
j31 j32 j33




 =
∑

j

(−)2j (2j + 1)
{

j11 j21 j31
j32 j33 j

} {
j12 j22 j32
j21 j j23

} {
j13 j23 j33
j j11 j12

}

=
∑

all m

(
j11 j12 j13
m11 m12 m13

) (
j21 j22 j23
m21 m22 m23

) (
j31 j32 j33
m31 m32 m33

)

×
(

j11 j21 j31
m11 m21 m31

) (
j12 j22 j32
m12 m22 m32

) (
j13 j23 j33
m13 m23 m33

)
. (19.219)

From Eq. (19.219), we see that an even permutation of rows or columns or a transposition of rows and
columns leave the 9j-symbol invariant, whereas an odd permutation of rows or columns produces a sign
change given by:

(−)j11+j12+j13+j21+j22+j23+j31+j32+j33 .

Orthogonal relations of 9j-symbols are obtained in the same way as with the 3j-symbols. We find:

∑

j12,j34

(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)






j1 j2 j12
j3 j4 j34
j13 j24 j











j1 j2 j12
j3 j4 j34
j′13 j′24 j




 = δj13,j′
13

δj24,j′
24

, (19.220)

and

∑

j13,j24

(−)2j3+j24+j23−j34(2j13 + 1)(2j24 + 1)






j1 j2 j12
j3 j4 j34
j13 j24 j











j1 j3 j13
j4 j2 j24
j14 j23 j






=






j1 j2 j12
j4 j3 j34
j14 j23 j




 . (19.221)

Relations between 6j- and 9j-symbols are obtained from orthogonality relations and recoupling vectors. One
which we will have occasion to use is:

∑

j12

(2j12 + 1)






j1 j2 j12
j3 j4 j34
j13 j24 j






{
j1 j2 j12
j34 j j′

}
= (−)2j′

{
j3 j4 j34
j2 j′ j24

} {
j13 j24 j
j′ j1 j3

}
. (19.222)
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The 9j-symbol with one of the j’s zero is proportional to a 6j-symbol:





j1 j2 j
j3 j4 j
j′ j′ 0




 =
(−)j2+j3+j+j′

√
(2j + 1)(2j′ + 1)

{
j1 j2 j
j4 j3 j′

}
. (19.223)

Algebraic formulas for the the commonly occurring 9j-symbol:





) )′ L
j j′ J

1/2 1/2 S




 , (19.224)

for S = 0, 1 are given by Matsunobu and Takebe [19]. Values of other special 9j-symbols can be found in
Edmonds [2], Brink and Satchler [18], or Rotenberg, Bivins, Metropolis, and Wooten [17]. The coupling of
five and more angular momenta can be done in similar ways as described in this section, but the recoupling
coefficients are not used as much in the literature, so we stop here in our discussion of angular momentum
coupling.

19.4.3 Rotation of coupled vectors

The relation between eigenvectors of angular momentum for a coupled system described in two coordinate
frames Σ and Σ′ is given by a rotation operator U(R) for the combined system, J = J1 + J2. Since J1 and
J2 commute, the rotation operator can be written in two ways:

UJ(R) = ein̂·Jθ/! = ein̂·J1θ/! ein̂·J2θ/! = UJ1(R) UJ1(R) . (19.225)

Operating with on (19.180) with UJ(R) and multiplying on the left by the adjoint of Eq. (19.180) gives:

〈 (j1, j2) j,m |UJ(R) | (j1, j2) j, m′ 〉 =
∑

m1,m2,m′
1,m′

2

〈 j1,m1 |UJ1(R) | j1,m′
1 〉 〈 j2,m2 |UJ1(R) | j2,m′

2 〉

× 〈 (j1, j2) j, m | j1,m1, j2,m2 〉 〈 j1,m′
1, j2,m

′
2 | (j1, j2) j, m′ 〉 . (19.226)

Here we have used the fact that the matrix elements of the rotation operator is diagonal in the total angular
momentum quantum number j. But from Definition 36, matrix elements of the rotation operator are just
the D-functions, so (19.226) becomes:

D(j)
m,m′(R) =

∑

m1,m2,m′
1,m′

2

D(j1)
m1,m′

1
(R) D(j2)

m2,m′
2
(R) 〈 (j1, j2) j, m | j1,m1, j2,m2 〉 〈 j1,m′

1, j2,m
′
2 | (j1, j2) j, m′ 〉 . (19.227)

Eq. (19.227) is called the Clebsch-Gordan series.9 Another form of it is found by multiplying (19.227)
through by another Clebsch-Gordan coefficient and using relations (19.182):

∑

m

〈 j1,m1, j2,m2 | (j1, j2) j,m 〉D(j)
m,m′(R)

=
∑

m′
1,m′

2

D(j1)
m1,m′

1
(R) D(j2)

m2,m′
2
(R) 〈 j1,m′

1, j2,m
′
2 | (j1, j2) j, m′ 〉 . (19.228)

9According to Rotenberg, et. al. [17], A. Clebsch and P. Gordan had little to do with what physicists call the Clebsch-Gordan
series.
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Exercise 64. Using the infinitesimal expansions:

D(j)
m,m′(n̂z,∆θ) = δm,m′ + im δm,m′ ∆θ + · · ·

D(j)
m,m′(n̂±,∆θ) = δm,m′ + i A(j,∓m′) δm,m′±1 ∆θ + · · · ,

(19.229)

evaluate the Clebsch-Gordan series, Eq. (19.228), for infinitesimal values of θ and for n̂ = n̂z and n̂± to
show that Clebsch-Gordan series reproduces Eqs. (19.184) and (19.185). That is, the Clebsch-Gordan series
determines the Clebsch-Gordan coefficients.

Multiplication of Eq. (19.228) again by a Clebsch-Gordan coefficient and summing over j and m′ gives a
third relation between D-functions:

D(j1)
m1,m′

1
(R) D(j2)

m2,m′
2
(R)

=
∑

j,m,m′

〈 j1,m1, j2,m2 | (j1, j2) j, m 〉 〈 j1,m′
1, j2,m

′
2 | (j1, j2) j, m′ 〉D(j)

m,m′(R) . (19.230)

In terms of 3j-symbols, (19.230) becomes:

D(j1)
m1,m′

1
(R) D(j2)

m2,m′
2
(R) =

∑

j,m,m′

(2j + 1)
(

j1 j2 j
m1 m2 m

) (
j1 j2 j
m′

1 m′
2 m′

)
D(j) ∗

m,m′(R) . (19.231)

For integer values of j1 = )1 and j2 = )2 and m1 = m2 = 0, (19.231) reduces to:

C"1,m1
(Ω) C"2,m2

(Ω) =
∑

",m

(2) + 1)
(

)1 )2 )
m1 m2 m

) (
)1 )2 )
0 0 0

)
C∗",m(Ω) . (19.232)

Using the orthogonality of the spherical harmonics, Eq. (19.232) can be used to find the integral over three
spherical harmonics:

∫
dΩ C"1,m1

(Ω) C"2,m2
(Ω) C"3,m3

(Ω) = 4π

(
)1 )2 )3
m1 m2 m3

) (
)1 )2 )3
0 0 0

)
. (19.233)

19.5 Tensor operators

The key to problems involving angular momentum matrix elements of operators is to write the operators in
terms of tensor operators, and then use powerful theorems regarding the matrix elements of these tensors.
The most important theorem is the Wigner-Eckart theorem, which will be discussed in the next section.
Others are discussed in the next section where we also give several examples of the use of these theorems.

19.5.1 Tensor operators and the Wigner-Eckart theorem

Definition 37 (tensor operator). An irreducible tensor operator Tk,q of rank k and component q, with
−k ≤ q ≤ +k, is defined so that under rotation of the coordinate system, it transforms as:

UJ(R) Tk,q U†
J(R) =

+k∑

q′=−k

Tk,q′ D(k)
q′,q(R) . (19.234)

where D(k)
q,q′(R) is the rotation matrix. The infinitesimal version of (19.234) is:

[Ji , Tk,q ] =
+k∑

q′=−k

Tk,q′ 〈 k, q′ |Ji | k, q 〉 , (19.235)
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which gives the equations:

[J±, Tk,q ] = ! A(k,∓q)Tk,q±1 , [Jz, Tk,q ] = ! q Tk,q . (19.236)

Definition 38 (Hermitian tensor operator). The usual definition of a Hermitian tensor operator for integer
rank k, and the one we will adopt here, is:

T †
k,q = (−)q Tk,−q . (19.237)

R1,q and J1,q, defined above, and the spherical harmonics satisfies this definition and are Hermitian operators.
A second definition, which preserves the Hermitian property for tensor products (see Theorem 36 below) is:

T †
k,q = (−)k−q Tk,−q . (19.238)

The only difference between the two definitions is a factor of ik.
The adjoint operator T †

k,q transforms according to:

U(R) T †
k,q U†(R) =

+k∑

q′=−k

T †
k,q′ D(k) ∗

q′,q (R) =
+k∑

q′=−k

T †
k,q′ D(k)

q,q′(R−1) . (19.239)

Or putting R → R−1, this can be written as:

U†(R) T †
k,q U(R) =

+k∑

q′=−k

T †
k,q′ D(k)

q,q′(R) . (19.240)

For tensors of half-integer rank, the definition of a Hermitian tensor operator does not work since, for this
case, the Hermitian adjoint, taken twice, does not reproduce the same tensor. So a definition of Hermitian
is not possible for half-integer operators.

Example 32. The operator made up of the components of the angular momentum operator and defined
by:

J1,q =






−(Jx + i Jy)/
√

2 , for q = +1,
Jz , for q = 0,

+(Jx − i Jy)/
√

2 , for q = −1,
(19.241)

is a tensor operator of rank one. Since (Jx, Jy, Jz) are Hermitian operators, J1,q satisfies J†
1,q = (−)qJ1,−q,

and therefore is a Hermitian tensor operator.

Example 33. The spherical harmonics Yk,q(Ω), considered as operators in coordinate space, are tensor
operators. Eqs. (19.18) mean that:

[J±, Yk,q(Ω) ] = ! A(k,∓q)Yk,q±1(Ω) , [Jz, Yk,q(Ω) ] = ! q Yk,q(Ω) , (19.242)

The reduced spherical harmonics Ck,q(Ω), given in Definition 34, are also tensor operators of rank k compo-
nent q.

Example 34. The operator R1,q made up of components of the coordinate vector (X, Y, Z) and defined by:

R1,q =






−(X + i Y )/
√

2 , for q = +1,
Z , for q = 0,

+(X − i Y )/
√

2 , for q = −1.
(19.243)

where X, Y , and Z are coordinate operators, is a tensor operator of rank one. Using [Xi, Lj ] = i! εijkXk,
one can easily check that Eq. (19.236) is satisfied. Note that since (X, Y, Z) are all Hermitian operators,
R(1, q) satisfies R†

1,q = (−)q R1,−q and so R(1, q) is a Hermitian tensor operator.
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The tensor operator R1,q is a special case of a solid harmonic, defined by:

Definition 39 (solid harmonic). A solid harmonic Rk,q is defined by:

Rk,q = Rk Ck,q(Ω) . (19.244)

Solid harmonics, like the reduced spherical harmonics, are tensor operators of rank k component q.

Finally let us define spherical unit vectors êq by:

êq =






−(êx + i êy)/
√

2 , for q = +1,
êz , for q = 0,

+(êx − i êy))/
√

2 , for q = −1.
(19.245)

These spherical unit vectors are not operators. The complex conjugate satisfies: ê∗q = (−)q ê−q. They also
and obey the orthogonality and completeness relations:

êq · ê∗q′ = δq,q′ ,
∑

q

êq ê∗q =
∑

q

(−)qêq ê−q = 1 . (19.246)

where 1 = êx êx + êy êy + êz êz is the unit dyadic. Any vector operator can be expanded in terms of spherical
tensors using these spherical unit vectors. For example, the vector operator R can be written as:

R =
∑

q

(−)q R1,q ê−q , where R1,q = R · êq . (19.247)

Exercise 65 (Edmonds). Let us define a vector operator S = ex Sx + ey Sy + ez Sz, which operates on
vectors, by:

Si = i! êi × , for i = (x, y, z). (19.248)

Show that:
S2 êq = !2 2 êq , Sz êq = ! q êq . (19.249)

That is, S is vector operator for spin one.

Angular momentum matrix elements of irreducible tensor operators with respect to angular momen-
tum eigenvectors are proportional to a Clebsch-Gordan coefficient, or 3j-symbol, which greatly simplifies
calculation of these quantities. The Wigner-Eckart theorem [20, 21], which we now prove, states that fact:

Theorem 35 (Wigner-Eckart). Angular momentum matrix elements of an irreducible tensor operator T (k, q)
is given by:

〈 j, m |Tk,q | j′,m′ 〉 = (−)j′−m′ 〈 j, m, j′,−m′ | (j, j′) k, q 〉√
2k + 1

〈 j ‖Tk ‖ j′ 〉 ,

= (−)j−m

(
j k j′

−m q m′

)
〈 j ‖Tk ‖ j′ 〉 .

(19.250)

Here 〈 j ‖Tk ‖ j′ 〉 is called the reduced matrix element, and is independent of m, m′, and q, which is the
whole point of the theorem.

Proof. Eq. (19.234) can be written as:

U(R)Tk,q′ U†(R) =
+k∑

q=−k

T †
k,q D(k)

q,q′(R) . (19.251)
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Matrix elements of this equation gives:

+k∑

q=−k

〈 j, m |Tk,q | j′,m′ 〉D(j)
q,q′(R) =

∑

m′′,m′′′

D(j)
m,m′′(R) D(j) ∗

m′,m′′′(R) 〈 j, m′′ |Tk,q | j′,m′′′ 〉

=
∑

m′′,m′′′

(−)m′−m′′′
D(j)

m,m′′(R) D(j′)
−m′,−m′′′(R) 〈 j, m′′ |Tk,q | j′,m′′′ 〉 (19.252)

Now let m′ → −m′ and m′′′ → −m′′′, so that (19.252) becomes:

+k∑

q=−k

〈 j, m |Tk,q | j′,−m′ 〉D(j)
q,q′(R)

=
∑

m′′,m′′′

(−)m′−m′′′
D(j)

m,m′′(R) D(j′)
m′,m′′′(R) 〈 j, m′′ |Tk,q | j′,−m′′′ 〉 (19.253)

Comparison with Eq. (19.228) gives:

〈 j, m |Tk,q | j′,−m′ 〉 = (−)j′+m′
〈 j, m, j′,m′ | (j, j′) k, q 〉 f(j, j′, k) , (19.254)

where f(j, j′, k) is some function of j, j′, and k, and independent of m, m′, and q. Choosing f(j, j′, k) to be:

f(j, j′, k) =
〈 j ‖Tk ‖ j′ 〉√

2k + 1
, (19.255)

proves the theorem as stated.

Definition 40 (tensor product). Let Tk1,q1(1) and Tk2,q2(2) be tensor operators satisfying Definition 37.
Then the tensor product of these two operators is defined by:

[Tk1(1)⊗ Tk2(2) ]k,q =
∑

q1,q2

〈 k1, q1, k2, q2 | (k1, k2) k, q 〉Tk1,q1(1)Tk2,q2(2) . (19.256)

Theorem 36. The tensor product of Definition 40 is a tensor operator also.

Proof. The proof relies on the Clebsch-Gordan series, and is left to the reader.

Theorem 36 means that the Wigner-Eckart theorem applies equally well to tensor products. The Hermi-
tian property for tensor products is preserved if we use the second definition, Eq. (19.238); it is not preserved
with the usual definition, Eq. (19.237).

Example 35. The tensor product of two commuting vectors

[R1(1)⊗R1(2) ]k,q =
∑

q1,q2

〈 1, q1, 1, q2 | (1, 1) k, q 〉R1,q1(1)R1,q2(2) , (19.257)

where R1,q1(1) and R1,q2(2) are tensor operators of rank one defined by Eq. (19.243), gives tensor operators
of rank k = 0, 1 and 2. For k = 0, the tensor product is:

[R1(1)⊗R1(2) ]0,0 =
∑

q1,q2

〈 1, q1, 1, q2 | (1, 1) 0, 0 〉R1,q1(1)R1,q2(2)

=
−1√

3

∑

q

(−)q R1,q(1)R1,−q(2) =
−1√

3
R(1) ·R(2) ,

(19.258)
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which is a scalar under rotations. For k = 1, the tensor product is:

[R1(1)⊗R1(2) ]1,q =
∑

q1,q2

〈 1, q1, 1, q2 | (1, 1) 1, q 〉R1,q1(1)R1,q2(2) , (19.259)

so that using Table 19.1, for q = +1, we find:

[R1(1)⊗R1(2) ]1,1 =
1√
2

( R1,1(1)R1,0(2)−R1,0(1)R1,1(2) )

=
−i

2
(
(Y (1)Z(2)− Z(1)Y (2) ) + i (Z(1)X(2)−X(2)Z(1) )

)
=

i√
2

[R(1)×R(2) ]1,1 , (19.260)

with similar expressions for q = 0,−1. So for q = 1, 0,−1, we find:

[R1(1)⊗R1(2) ]1,q =
i√
2

[R(1)×R(2) ]1,q , (19.261)

which is a pseudovector under rotations. For k = 2, the five q components are given by,

[R1(1)⊗R1(2) ]2,±2 = R1,±1(1)R1,±1(2) ,

[R1(1)⊗R1(2) ]2,±1 =
1√
2

(
R1,±1(1)R1,0(2) + R1,0(1)R1,±1(2)

)
,

[R1(1)⊗R1(2) ]2, 0 =
1√
6

(
R1,1(1)R1,−1(2) + 2 R1,0(1)R1,0(2) + R1,1(−1) R1,1(2)

)
,

(19.262)

which can be written in terms of the Cartesian components of the traceless symmetric tensor:

Rij(1, 2) =
1
2

(
Ri(1)Rj(2) + Rj(1)Ri(2)

)
− 1

3
δij (R(1) ·R(2) ) . (19.263)

Definition 41 (Scalar product). For the zero rank tensor product of two rank one tensors, it is useful to
have a special definition, called the scalar product, so that it agrees with the usual dot product of vectors.
So we define:

[Tk(1)0 Tk(2) ] =
∑

q

(−)q Tk,q(1)Tk,−q(2) =
∑

q

Tk,q(1)T †
k,q(2) =

∑

q

T †
k,q(1)Tk,q(2)

=
√

2k + 1 (−)k [Tk(1)⊗ Tk(2) ]0,0 .

(19.264)

Example 36. The scalar product of two vectors is just the vector dot product. We find:

[R1(1)0R1(2) ] =
∑

q

(−)q R1,q(1)R1,−q(2) = R(1) ·R(2) . (19.265)

Example 37. An important example of a scalar product is given by writing the addition theorem for
spherical harmonics, Eq. (19.174), as a tensor product:

Pk(cos γ) =
4π

2) + 1

+k∑

q=−k

Yk,q(Ω) Y ∗k,q(Ω
′) =

+k∑

q=−k

Ck,q(Ω) C∗k,q(Ω
′) = [ Ck(Ω)0 Ck(Ω′) ] . (19.266)

19.5.2 Reduced matrix elements

The Wigner-Eckart theorem enables us to calculate matrix elements of any operator for different values of
(m,m′, q) if we know the reduced matrix element, so it is useful to have a table of reduced matrix elements
for operators that enter into calculations. In order to find the reduced matrix element, we only have to
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compute the full matrix element for certain values of (m,m′, q), usually q = 0, and then use the tables of
Clebsch-Gordan coefficients or 3j-symbols.

Two important ones are the angular momentum tensor J of rank one and the spherical harmonic tensor
of rank k:

〈 j ‖ J ‖ j′ 〉 = ! δj,j′
√

j(j + 1)(2j + 1) . (19.267)

〈 ) ‖Yk ‖ )′ 〉 = (−)"

√
(2) + 1)(2)′ + 1)(2k + 1)

4π

(
) k )′

0 0 0

)
. (19.268)

Special cases are:

〈 ) ‖L ‖ )′ 〉 = ! δ","′
√

)() + 1)(2) + 1) , 〈 1/2 ‖σ ‖ 1/2 〉 =
√

6 , (19.269)

〈 ) ‖Ck ‖ )′ 〉 = (−)"
√

(2) + 1)(2)′ + 1)
(

) k )′

0 0 0

)
. (19.270)

Exercise 66. Prove Eqs. (19.267) and (19.270). [Hint: The reduced matrix element of J can be found using
Table 19.2. The reduced matrix elements of Ck(Ω) can be found in coordinate space using Eq. (19.233).]

The reduced matrix element of solid harmonics involve radial integrals, which we have ignored up to now.
Adding radial quantum numbers to the matrix elements gives, for the solid harmonics:

〈n, ) ‖Rk ‖n′, )′ 〉 = (−)"
√

(2) + 1)(2)′ + 1)
(

) k )′

0 0 0

) ∫ ∞

0
r2 dr Rn,"(r) rk Rn′,"′(r) , (19.271)

where Rn,"(r) are (real) radial wave functions for the state (n, )).

19.5.3 Angular momentum matrix elements of tensor operators

In this section, we give several theorems regarding angular momentum matrix elements of tensor operators.
These theorem are the basis for calculating all matrix elements in coupled schemes. The theorems are from
Edmonds [2][Chapter 7].

Theorem 37. Let Tk1,q1(1) and Tk2,q2(2) be two tensor operators which act on the same angular momentum
system. Then

〈 j ‖ [Tk1(1)⊗ Tk2(2) ]k ‖ j′ 〉

=
√

2k + 1 (−)k+j+j′ ∑

j′′

{
k1 k2 k
j′ j j′′

}
〈 j ‖Tk1(1) ‖ j′′ 〉 〈 j′′ ‖Tk2(2) ‖ j′ 〉 . (19.272)

Proof. XXX

Theorem 38. Let Tk1,q1(1) and Tk2,q2(2) be two tensor operators which act on parts one and two of a
combined system, so that [Tk1,q1(1), Tk2,q2(2) ] = 0. Then

〈 (j1, j2) j ‖ [Tk1(1)⊗ Tk2(2) ]k ‖ (j′1, j
′
2) j′ 〉

=
√

(2k + 1)(2j + 1)(2j′ + 1)






j1 j′1 k1

j2 j′2 k2

j j′ k




 〈 j1 ‖Tk1(1) ‖ j′1 〉 〈 j2 ‖Tk2(2) ‖ j′2 〉 . (19.273)

Proof. XXX
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Theorem 39. Matrix elements of the scalar product of two tensor operators Tk,q(1) and Tk,q(2) which act
on parts one and two of a coupled system is given by:

〈 (j1, j2) j,m | [Tk(1)0 Tk(2) ] | (j′1, j′2) j′,m′ 〉

= δj,j′ δm,m′ (−)j′
1+j2+j

{
j j2 j1
k j′1 j′2

}
〈 j1 ‖Tk(1) ‖ j′1 〉 〈 j2 ‖Tk(2) ‖ j′2 〉 . (19.274)

Proof. XXX

Theorem 40. The reduced matrix element of a tensor operators Tk,q(1) which acts only on part one of a
coupled system is given by:

〈 (j1, j2) j ‖Tk(1) ‖ (j′1, j
′
2) j′ 〉

= δj2,j′
2
(−)j1+j2+j′+k

√
(2j + 1)(2j′ + 1)

{
j1 j j′2
j′ j′1 k

}
〈 j1 ‖Tk(1) ‖ j′1 〉 . (19.275)

Proof. XXX

Theorem 41. The reduced matrix element of a tensor operators T2(k, q) which acts only on part two of a
coupled system is given by:

〈 (j1, j2) j ‖Tk(2) ‖ (j′1, j
′
2) j′ 〉

= δj2,j′
2
(−)j′

1+j2+j+k
√

(2j + 1)(2j′ + 1)
{

j2 j j′1
j′ j′2 k

}
〈 j2 ‖Tk(2) ‖ j′2 〉 . (19.276)

Proof. XXX

19.6 Application to selected problems in atomic and nuclear physics

In this section, we give several examples of the use of tensor operators in atomic and nuclear physics.

19.6.1 Spin-orbit force in hydrogen

The spin-orbit force for the electron in a hydrogen atom in atomic units is given by a Hamiltonian of the
form (see Section 20.3.2):

Hso = V (R) (L · S )/!2 . (19.277)

Of course it is easy to calculate this in perturbation theory for the states |n, (), s) j, mj 〉. Since J = L + S,
and squaring this expression, we find that we can write:

L · S =
1
2

(J2 − L2 − S2 ) , (19.278)

so that we find:
〈 (), s) j, mj |L · S | (), s) j, mj 〉/!2 =

1
2
(
j(j + 1)− )() + 1)− 3/4

)
. (19.279)

Since L ·S = [L0S ], we can also find matrix elements of the spin-orbit force using Theorem 39. This gives:

〈 (), s) j, mj | [L0 S ] | (), s) j,mj 〉/!2 = (−)j+"+s

{
j s )
1 ) s

}
〈 ) ‖L ‖ ) 〉 〈 s ‖S ‖ s 〉/!2 . (19.280)
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Now using the 6j-tables in Edmonds, we find:
{

j s )
1 ) s

}
= (−)j+"+s 2 [ j(j + 1)− )() + 1)− s(s + 1) ]√

2)(2) + 1)(2) + 2)2s(2s + 1)(2s + 2)
,

〈 ) ‖L ‖ ) 〉/! =
√

2)(2) + 1)(2) + 2)/2 ,

〈 s ‖S ‖ s 〉/! =
√

2s(2s + 1)(2s + 2)/2 ,

(19.281)

so (19.280) becomes simply:

〈 (), s) j, mj | [L0 S ] | (), s) j, mj 〉/!2 =
1
2
(
j(j + 1)− )() + 1)− 3/4

)
. (19.282)

in agreement with Eq. (20.62). Of course, using the fancy angular momentum theorems for tensor operators
in this case is over-kill! Our point was to show that the theorems give the same result as the simple way.
We will find in later examples that the only way to do the problem is to use the fancy theorems.

19.6.2 Transition rates for photon emission in Hydrogen

Omit?

19.6.3 Hyperfine splitting in Hydrogen

In this section, we show how to compute the hyperfine energy splitting in hydrogen due to the interaction
between the magnetic moment of the proton and the electron. We derive the forces responsible for the
splitting in Section 20.3.3 where, in atomic units, we found the Hamiltonian:

H̄hf = 2λp

( m

M

)
α2 Ke · Sp/!2

R̄3
, Ke = Le − Se + 3 (Se · R̂) R̂ , (19.283)

where Le and Se are the angular momentum and spin operators for the electron, Sp is the spin operator
for the proton, and r̂ is the unit vector pointing from the proton to the electron. Here Ke acts on the
electron part and Se on the proton part. Both Ke and Se are tensor operators of rank one. Using first order
perturbation theory, we want to show that matrix elements of this Hamiltonian in the coupled states:

|n, (), se) j, sp, f, mf 〉 , (19.284)

are diagonal for states with the same value of j, and we want to find the splitting energy. We first want to
write Se − 3 (Se · r̂) r̂ as a tensor operator. We state the result of this derivation as the following theorem:

Theorem 42. The vector Se − 3 (Se · r̂) r̂ can be written as a rank one tensor operator of the form:

[Se − 3 (Se · R̂) R̂ ]1,q =
√

10 [C2(R̂)⊗ S1(e) ]1,q . (19.285)

Proof. We start by writing:

[Se − 3 (Se · R̂) R̂ ]1,q =
∑

q1

S1,q1(e)
{

δq1,q − 3 C∗1,q1
(R̂) C1,q(R̂)

}
. (19.286)

Next, we have:

3 C∗1,q1
(R̂)C1,q(R̂) = 3 (−)q1

∑

k,q2

Ck,q2
(R̂) 〈 1,−q1, 1, q | (1, 1) k, q 〉 〈 1, 0, 1, 0 | (1, 1) k, 0 〉

= δq1,q −
√

10
∑

q2

C2,q2
(R̂) 〈 2, q2, 1, q1 | (1, 2) 1, q 〉 .

(19.287)
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Here we have used 〈 1, 0, 1, 0 | (1, 1) k, 0 〉 = −1/
√

3, 0, and +
√

2/3 for k = 0, 1, and 2 respectively. Substi-
tution of (19.287) into (19.286) gives:

[Se−3 (Se ·R̂) R̂ ]1,q =
√

10
∑

q2

〈 2, q2, 1, q1 | (1, 2) 1, q 〉C2,q2
(R̂) S1,q1(e) =

√
10[C2(R̂)⊗S1(e) ]1,q , (19.288)

which proves the theorem.

We now want to find the matrix elements of the scalar product:

〈n, (), se) j, sp, f,mf | [K1(e)0 S1(p) ] |n, ()′, se) j, sp, f
′,m′

f 〉 , (19.289)

where K1,q(e) is the rank one tensor operator:

K1,q(e) = L1,q(e)−
√

10 [C2(R̂)⊗ S1(e) ]1,q . (19.290)

Here K1(e) only operates on the electron part (the first part of the coupled state) and S1(p) on the proton
part (the second part of the coupled state). So using Theorem 39, we find:

〈n, (), se) j, sp, f,mf | [K1(e)0 S1(p) ] |n, ()′, se) j, sp, f
′,m′

f 〉/!2

= δf,f ′ δmf ,m′
f

(−)j+sp+f

{
f sp j
1 j sp

}
〈 (), se) j ‖K1(e) ‖ ()′, se) j 〉 〈 sp ‖S1(p) ‖ sp 〉/!2

= δf,f ′ δmf ,m′
f

(−)f+j+1/2
√

3/2
{

f 1/2 j
1 j 1/2

}
〈 (), se) j ‖K1(e) ‖ ()′, se) j 〉/!

= δf,f ′ δmf ,m′
f

f(f + 1)− j(j + 1)− 3/4
2
√

j(j + 1)(2j + 1)
〈 (), se) j ‖K1(e) ‖ ()′, se) j 〉/! . (19.291)

Since L1(e) only operates on the first part of the coupled scheme (), se) j, its reduced matrix elements can
be found by application of Theorem 40, and we find:

〈 (), se) j ‖L1(e) ‖ ()′, se) j 〉/! = (−)"+j+3/2 (2j + 1)
{

) j 1/2
j )′ 1

}
〈 ) ‖L1(e) ‖ )′ 〉/! .

= δ","′
1
2

√
2)(2) + 1)(2) + 2) (−)"+j+3/2 (2j + 1)

{
1/2 j )
1 ) j

}

= δ","′
1
2

√
2j + 1

j(j + 1)
{

j(j + 1) + )() + 1)− 3/4
}

,

(19.292)

where we have used Table 19.3. Using Theorem 38 the reduced matrix element of
√

10 [C2(r̂) ⊗ S1(e) ]1 is
given by
√

10 〈 (), se) j ‖ [C2(R̂)⊗ S1(e) ]1 ‖ ()′, se) j 〉/!

=
√

30 (2j + 1)






) )′ 2
se se 1
j j 1




 〈 ) ‖C2(r̂) ‖ )′ 〉 〈 se ‖S1(e) ‖ se 〉/!

= (−)" 3
√

5 (2j + 1)
√

(2) + 1)(2)′ + 1)
(

) 2 )′

0 0 0

) 




) )′ 2
1/2 1/2 1
j j 1




 . (19.293)

The 6j-symbol vanished unless ) + )′ + 2 is even. But since we are only considering states with the same j
values, this means that ) = )′. From tables in Edmonds, we have:

(
) 2 )
0 0 0

)
= (−)"+1

√
)() + 1)

(2)− 1)(2) + 1)(2) + 3)
, (19.294)
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and from tables in Matsunobu and Takebe [19], we have:





) ) 2
j j 1

1/2 1/2 1




 =
1

3
√

5 (2j + 1)(2) + 1)





(−)

√
2)(2)− 1) , for j = ) + 1/2,

(+)
√

(2) + 1)(2) + 3) , for j = )− 1/2.
(19.295)

Putting Eqs. (19.294) and (19.295) into Eq. (19.293) gives:

√
10 〈 (), se) j ‖ [C2(R̂)⊗ S1(e) ]1 ‖ ()′, se) j 〉/!

= δ","′
1
2

√
2j + 1

j(j + 1)
×

{
) for j = ) + 1/2,
−() + 1) for j = )− 1/2

= δ","′
1
2

√
2j + 1

j(j + 1)
{

j(j + 1)− )() + 1)− 3/4
}

. (19.296)

So subtracting (19.296) from (19.292), we find the result:

〈 (), se) j ‖K1(e) ‖ ()′, se) j 〉/! = δ","′ )() + 1)

√
2j + 1

j(j + 1)
. (19.297)

Putting this into Eq. (19.291) gives:

〈n, (), se) j, sp, f,mf | [K1(e)0 S1(p) ] |n, ()′, se) j, sp, f
′,m′

f 〉/!2

= δf,f ′ δmf ,m′
f

δ","′
)() + 1)
2j(j + 1)

{
f(f + 1)− j(j + 1)− 3/4

}
. (19.298)

So we have shown that:

〈n, (), se) j, sp, f,mf | H̄hf |n, ()′, se) j, sp, f
′,m′

f 〉 = δf,f ′ δmf ,m′
f

δ","′ ∆En,",j,f , (19.299)

where, in atomic units, the energy shift ∆Ēn,",j,f is given by:

∆Ēn,",j,f = 2λp

( m

M

)
α2 f(f + 1)− j(j + 1)− 3/4

n3 j(j + 1) (2) + 1)
. (19.300)

Here we have used: 〈 1
R̄3

〉

n,"
=

2
n3 )() + 1)(2) + 1)

. (19.301)

Eq. (19.300) is quoted in our discussion of the hyperfine structure of hydrogen in Section 20.3.3.

19.6.4 Zeeman effect in Hydrogen

The Hamiltonian for the Zeeman effect in Hydrogen is given by Eq. (20.91), where we found:

Hz = µB (L + 2S ) ·B/! , with µB =
e !

2 mc
. (19.302)

We shall find matrix elements within the hyperfine splitting levels. That is, taking the z-axis in the direction
of the B field,

〈 (), se) j, sp, f,mf |Hz | (), se) j, sp, f
′,m′

f 〉
= µB B 〈 (), se) j, sp, f,mf | ( Lz + 2 Sz ) | (), se) j, sp, f

′,m′
f 〉/! . (19.303)
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Now both Lz and Sz are q = 0 components of tensor operators of rank k = 1. So using the Wigner-Eckart
Theorem 35, and Theorems 40 and 41, we find:

〈 (), se) j, sp, f,mf |L1,0(e) | (), se) j, sp, f
′,m′

f 〉/!

= (−)f−mf

(
f 1 f ′

−mf 0 m′
f

)
〈 (), se) j, sp, f ‖L1(e) ‖ (), se) j, sp, f

′ 〉/!

= (−)f−mf +j+1/2+f ′+1
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}
〈 (), se) j ‖L1(e) ‖ (), se) j 〉/!

= (−)f−mf +j+1/2+f ′+j+"+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
{

) j 1/2
j ) 1

}
〈 ) ‖L1(e) ‖ ) 〉/!

= (−)f−mf +j+1/2+f ′+j+"+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1) )() + 1)(2) + 1)
(

f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
{

) j 1/2
j ) 1

}

= (−)f+f ′−mf +j−1/2 1
2

√
(2j + 1)(2f + 1)(2f ′ + 1)

j(j + 1)

(
f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
[
j(j + 1) + )() + 1)− 3/4

]
(19.304)

and

〈 (), se) j, sp, f,mf |S1,0(e) | (), se) j, sp, f
′,m′

f 〉/!

= (−)f−mf

(
f 1 f ′

−mf 0 m′
f

)
〈 (), se) j, sp, f ‖S1(e) ‖ (), se) j, sp, f

′ 〉/!

= (−)f−mf +j+1/2+f ′+1
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}
〈 (), se) j ‖S1(e) ‖ (), se) j 〉/!

= (−)f−mf +j+1/2+f ′+j+"+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
{

1/2 j )
j 1/2 1

}
〈 1/2 ‖S1(e) ‖ 1/2 〉/!

= (−)f−mf +j+1/2+f ′+j+"+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1) 3/2
(

f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
{

1/2 j )
j 1/2 1

}
= (−)f+f ′−mf +j−1/2 1

2

√
(2j + 1)(2f + 1)(2f ′ + 1)

j(j + 1)

(
f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
[
j(j + 1)− )() + 1) + 3/4

]
. (19.305)

So multiplying Eq. (19.305) by a factor of two and adding it to Eq. (19.304) gives:

〈 (), se) j, sp, f, mf |Hz | (), se) j, sp, f
′,m′

f 〉

= µB B (−)f+f ′−mf +j−1/2 1
2

√
(2j + 1)(2f + 1)(2f ′ + 1)

j(j + 1)

(
f 1 f ′

−mf 0 m′
f

) {
j f 1/2
f ′ j 1

}

×
[
3j(j + 1)− )() + 1) + 3/4

]
. (19.306)
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The 3j-symbol vanishes unless m′
f = mf , so the matrix element connects only states of the same mf . Now

if f ′ = f , we find the simple result:

〈 (), se) j, sp, f,mf |Hz | (), se) j, sp, f,mf 〉

= (µB B )mf

[
f(f + 1) + j(j + 1)− 3/4

] [
3j(j + 1)− )() + 1) + 3/4

]

4 f(f + 1) j(j + 1)
. (19.307)

On the other hand, if f ′ = f + 1, we get:

〈 (), se) j, sp, f,mf |Hz | (), se) j, sp, f + 1,mf 〉

= ( µB B )
3j(j + 1)− )() + 1) + 3/4

j(j + 1) (f + 1)

×

√
(f −mf + 1)(f + mf + 1)(f + j + 5/2)(f + j + 1/2)(f − j + 3/2)(j − f + 1/2)

(2f + 1)(2f + 3)
. (19.308)

with an identical expression for the matrix elements of 〈 (), se) j, sp, f + 1,mf |Hz | (), se) j, sp, f, mf 〉. We
use these results in Section 20.3.4.

19.6.5 Matrix elements of two-body nucleon-nucleon potentials

In the nuclear shell model, nucleons (protons and neutrons) with spin s = 1/2 are in (), s) j, mj coupled
orbitals with quantum numbers given by: n())j = 1s1/2, 1p1/2, 2s1/2, 2p3/2, · · · . We leave it to a nuclear
physics book to explain why this is often a good approximation (see, for example, the book Nuclear Physics
by J. D. Walecka). The nucleon-nucleon interaction between nucleons in these orbitals give a splitting of the
shell energies of the nucleus. One such interaction is the one-pion exchange interaction of the form:

V (r1, r2) = V0
e−µr

r

{
σ1 · σ2 +

[ 1
(µr)2

+
1

(µr)
+

1
3

]
S1,2

}
τ 1 · τ 2 , (19.309)

where r = |r1 − r2| is the distance between the nucleons, µ = mπc/! the inverse pion Compton wavelength,
σ1 and σ2 the spin operators, τ 1 and τ 2 the isospin operators for the two nucleons, and S1,2 the tensor
operator:

S1,2 = 3 (r̂ · σ1) (r̂ · σ2)− σ1 · σ2 . (19.310)
The nuclear state is given by the coupling:

|n1, n2; ()1, s1) j1, ()2, s2) j2, j,m 〉 (19.311)

To find the nuclear energy levels, we will need to find matrix elements of the nuclear force between these states.
The calculation of these matrix elements generally involve a great deal of angular momentum technology.
The nucleon-nucleon force, given in Eq. (19.309), is only one example of a static nucleon-nucleon interaction.
Other examples are the V6 and V12 Argonne interactions. Matrix elements of these interactions have been
worked out in the literature by B. Mihaila and J. Heisenberg [22]. We show how to compute some of these
matrix elements here.

Scalar force

Let us first make a multipole expansion of a scalar potential. Let r1 and r2 be the location of nucleon 1 and
nucleon 2 in the center of mass coordinate system of the nucleus. Then a scalar potential, which depends
only on the magnitude of the distance between the particles is given by:

VS(r1, r2) = VS(|r1 − r2|) = V (r1, r2, cos θ)

=
∞∑

k=0

Vk(r1, r2)Pk(cos θ) =
∞∑

k=0

Vk(r1, r2) [Ck(Ω1)0 Ck(Ω2) ] ,
(19.312)
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where

Vk(r1, r2) =
2k + 1

2

∫ +1

−1
V (r1, r2, cos θ) Pk(cos θ) d(cos θ) , (19.313)

and where we have used Eq. (19.266). Eq. (19.312) is now in the form required for the j-j coupling state
given in (19.311). So now applying Theorem 19.274, we find:

∆E = 〈n1, n2; ()1, s1) j1, ()2, s2) j2, j,m |V (|r1 − r2|) |n1, n2; ()1, s1) j1, ()2, s2) j2, j
′,m′ 〉

=
∞∑

k=0

Fk(1, 2) 〈 ()1, s1) j1, ()2, s2) j2, j,m | [Ck(Ω1)0 Ck(Ω2) ] | ()1, s1) j1, ()2, s2) j2, j,m 〉

= δj,j′ δm,m′

∞∑

k=0

Fk(1, 2) (−)j1+j2+j

{
j j2 j1
k j1 j2

}

× 〈 ()1, s1) j1 ‖Ck(Ω1) ‖ ()1, s1) j1 〉 〈 ()2, s2) j2 ‖Ck(Ω2) ‖ ()2, s2) j2 〉 .

(19.314)

Here
Fk(1, 2) =

∫ ∞

0
r2
1 dr1

∫ ∞

0
r2
2 dr2 R2

n1,"1,j1(r1) R2
n2,"2,j2(r2)Vk(r1, r2) (19.315)

are integrals over the radial wave functions for the nucleons in the orbitals n1()1)j1 and n2()2)j2 . It is now
a simple matter to compute the reduced matrix elements of Ck(Ω) using Theorem 40 and Eqs. (19.211) and
(19.270). We find:

〈 (), 1/2) j ‖Ck(Ω) ‖ ()′, 1/2) j′ 〉 = (−)"+"′+j′+k
√

(2j + 1)(2j′ + 1)
{

) j 1/2
j′ )′ k

}
〈 ) ‖Ck ‖ )′ 〉

= (−)"′+j′+k
√

(2j + 1)(2j′ + 1)(2) + 1)(2)′ + 1)
{

) j 1/2
j′ )′ k

} (
) k )′

0 0 0

)

= (−)k+j′−1/2
√

(2j + 1)(2j′ + 1)
{

j j′ k
1/2 −1/2 0

}
δ(), )′, k) , (19.316)

where δ(), )′, k) = 1 if ) + )′ + k is even and (), )′, k) satisfy the triangle inequality, otherwise it is zero.
Substitution into Eq. (19.314) gives ∆E = δj,j′δm,m′ Ej , where Ej is given by:

∆Ej =
∞∑

k=0

Fk(1, 2) (−)j+1 (2j1 + 1)(2j2 + 1)

×
{

j j2 j1
k j1 j2

} {
j1 j1 k
1/2 −1/2 0

} {
j2 j2 k
1/2 −1/2 0

}
δ()1, )1, k) δ()2, )2, k) , (19.317)

which completes the calculation. Note that k has to be even.

Exercise 67. If j1 = j2 and all values of Fk(1, 2) are negative corresponding to an attractive nucleon-nucleon
potential, show that the expected nuclear spectra is like that shown in Fig. ??. [J. D. Walecka, p. 517].

Spin-exchange force

The nucleon-nucleon spin-exchange force is of the form:

VSE(r1, r2, σ1, σ2) = VSE(|r1 − r2|) σ1 · σ2 =
∑

k,"

(−)"+1−k V"(r1, r2) [T",k(1)0 T",k(2) ] , (19.318)

where
T(",1) k,q(1) = [C"(Ω1)⊗ σ(1) ]k,q ,

T(",1) k,q(2) = [C"(Ω2)⊗ σ(2) ]k,q .
(19.319)

This now is in a form suitable for calculation in j-j coupling.
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Spin-orbit force

XXX

Tensor force

The tensor force is of the form:

VT (r1, r2, σ1, σ2) = VT (|r1 − r2|)
{

(σ1 · r̂12 ) (σ2 · r̂12 )− ( σ1 · σ2 )/3
}

= VT (|r1 − r2|) [L2(1, 2)0 S2(1, 2)] ,
(19.320)

where

S2,q(1, 2) = [σ1(1)⊗ σ1(2) ]2,q ,

L2,q(1, 2) = [ R̂1(1, 2)⊗ R̂1(1, 2) ]2,q ,
(19.321)

with R̂1(1, 2) the spherical vector of components of the unit vector r12. We follow the method described by
de-Shalit and Walecka [23] here. Expanding

VT (|r1 − r2|) =
∞∑

k=0

VT k(r1, r2) [Ck(Ω1)0 Ck(Ω2) ] , (19.322)

After some work, we find:

VT (r1, r2, σ1, σ2) =
∑

k,"

(−)"+1−k V"(r1, r2) [X",k(1)0X",k(2) ] , (19.323)

where

19.6.6 Density matrix for the Deuteron
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