1. This problem is about the Bogoliubov transformation. A common tool in studying many-body quantum systems is the operator transform. Suppose the particle creation and annihilation operators \(a^\dagger_i \) and \(a_i \) can be algebraically expressed in terms of a new set of operators \(b^\dagger_i \) and \(b_i \) that obey the same canonical commutation relations:

\[
[b_i, b_j] = [b_i^\dagger, b_j^\dagger] = 0 \quad [b_i, b_j^\dagger] = \delta_{ij} .
\]

The operators \(b^\dagger_i \) and \(b_i \) are often said to create/annihilate quasiparticles. The commutation relations, Eq. (1), imply that there is a unique state \(|B_i\rangle \) that is annihilated by all \(b_i \); this state is usually referred to as the quasiparticle vacuum, the states of the form \(b^\dagger_i |0\rangle \) are the one-quasiparticle states, etc. Whenever the quasiparticles can be labeled by the same quantum numbers (e.g. \(\tilde{k} \)) as the original bosonic particles of the theory, it is often convenient to make a unitary operator transform:

\[
b_i = U a_i U^\dagger, \quad b_i^\dagger = U a_i^\dagger U^\dagger,
\]

where \(U \) is a unitary operator in the Fock space, usually of the form \(\exp(X) \) for some anti-hermitian polynomial \(X \) in \(a_i \) and \(a_i^\dagger \).

(a) Show that the unitarity of \(U \) automatically guarantees that \(b_n \) and \(b_n^\dagger \) satisfy Eq. (1), and that the quasiparticle state \(|B\rangle = U |0\rangle \) is the quasiparticle vacuum.

(b) Verify that for \(X = \sum_n (c_n a_n^\dagger - c_n^* a_n) \), \(\exp(X) a_n \exp(-X) = a_n - c_n \). This transform is a c-number shift.

(c) Now let \(X = \sum_n \frac{1}{2} \eta_n (e^{i\lambda n} (a_n^\dagger)^2 - e^{-i\lambda n} (a_n)^2) \) \((\eta_n \) and \(\lambda_n \) are real). Show that for this \(U = \exp(X) \), Eqs. (2) define a diagonal canonical transform:

\[
b_i = a_i \cosh \eta_i - e^{i\lambda_i} a_i^\dagger \sinh \eta_i, \quad b_i^\dagger = \cosh \eta_i a_i^\dagger - e^{-i\lambda_i} \sinh \eta_i a_i .
\]

(d) In order to see the utility of the Bogoliubov transformation, consider the simple case of one creation/annihilation operator pair with \(\lambda = \pi \). We then have

\[
b = a \cosh \eta + a^\dagger \sinh \eta .
\]

Use this transformation to obtain the eigenvalues of the following Hamiltonian:

\[
H = \hbar \omega a^\dagger a + \frac{1}{2} V(aa^\dagger + a^\dagger a) .
\]

Also give the upper limit on \(V \) for which this can be done.

(e) Write down the ground state of the Hamiltonian above in terms of the number states \(a^\dagger a |n\rangle = n |n\rangle \).
2. This problem is about Pauli’s method of solving the hydrogen atom. For all spherically-symmetric potentials, discrete spectra of bound state energies have \((2l+1)\)-fold degeneracy mandated by the \(SO(3)\) symmetry — all states \(|l, m, n_r\rangle\) with the same \(l\) and \(n_r\) but different \(m\) have the same energy \(E(l, n_r)\). For most potentials, there is no further degeneracy — different combinations of \(l\) and \(n_r\) give different energies. However, there are two “accidentally degenerate” exceptions to that rule: the spherically-symmetric harmonic oscillator potential \(\hat{V} = \frac{1}{2}M\omega^2\hat{r}^2\), and the Coulomb potential \(\hat{V} = -e^2Z/\hat{r}\). In both cases the extra degeneracy is due to non-obvious conservation laws leading to unexpected enlargement of the symmetry group from the rotations-only \(SO(3)\) to \(SU(3)\) in the harmonic case and to \(SO(3) \times SO(3)\) in the Coulomb case. (We saw this in problem 1 of HW 3 for the case of the two-dimensional harmonic oscillator where \(SO(2)\) is enlarged to \(SU(2) \sim SO(3)\).

The unexpected conservation law in the Coulomb case is the Laplace-Runge-Lenz theorem generalized from classical to quantum mechanics. Classically, we define the Runge-Lenz vector \(\mathbf{K}\) as

\[
\mathbf{K} \equiv \mathbf{p} \times \mathbf{L} - e^2ZM\mathbf{n}_r,
\]

where \(M\) is the particle’s mass, \(\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}\) is its angular momentum and \(\mathbf{n}_r \equiv \mathbf{x}/r\) is a unit vector pointing towards the particle. The Laplace-Runge-Lenz theorem states that for the Coulomb (Newton) potential, \(\mathbf{K}\) is a conserved quantity, \(i.e.,\) does not change with time.

(a) Prove the classical Laplace-Runge-Lenz theorem.

The definition, Eq. (6) implies that \(\mathbf{x} \cdot \mathbf{K} = \mathbf{L}^2 - e^2ZMr\) and hence \(r = \mathbf{L}^2/(|\mathbf{K}| \cos \phi + e^2ZM)\) where \(\phi\) is the angle between \(\mathbf{K}\) and \(\mathbf{x}\). Therefore, constancy of the Runge-Lenz vector implies that the classical orbits are conical sections of eccentricity \(\epsilon = \mathbf{K}/e^2ZM\); for \(\epsilon < 1\) the orbit is a closed ellipse whose pericenter lies in the direction pointed to by \(\mathbf{K}\).

In quantum mechanics we define the Runge-Lenz vector operator

\[
\hat{\mathbf{K}} \equiv \frac{1}{2} (\hat{\mathbf{p}} \times \hat{\mathbf{L}} - \hat{\mathbf{L}} \times \hat{\mathbf{p}}) - e^2ZM\hat{\mathbf{x}}\hat{r}^{-1}.
\]

(b) Verify that each of the component operators \(\hat{K}_i\) is hermitian and is conserved, \(i.e.\) commutes with the Hamiltonian

\[
\hat{H} = \frac{1}{2M}\hat{\mathbf{p}}^2 - e^2Z\hat{r}^{-1}.
\]

To find out the Lie algebra generated by the conserved operators \(\hat{L}_i\) and \(\hat{K}_i\), we need their commutation relations. We know that \([\hat{L}_i, \hat{L}_j] = i\hbar\varepsilon_{ijk}\hat{L}_k\).

(c) Show that

\[
[\hat{K}_i, \hat{L}_j] = i\hbar\varepsilon_{ijk}\hat{K}_k \quad [\hat{K}_i, \hat{K}_j] = -2M\hat{H} \cdot i\hbar\varepsilon_{ijk}\hat{L}_k.
\]

Now consider the subspace of the Hilbert space spanned by the bound states of the Hamiltonian. On this subspace let us define two vector operators \(\hat{Q}_+\) and \(\hat{Q}_-\):

\[
\hat{Q}_\pm \equiv \frac{\hat{\mathbf{L}}}{\sqrt{2}} \pm \frac{\hat{\mathbf{K}}}{\sqrt{8M\hat{H}}}. \quad (10)
\]
(d) Show that the six operators \hat{Q}_i^\pm are hermitian, conserved and obey the $SO(3) \times SO(3)$ commutation relations:

$$[\hat{Q}_i^+, \hat{Q}_j^-] = i\hbar\epsilon^{ijk}\hat{Q}_k^+,$$
$$[\hat{Q}_i^-, \hat{Q}_j^+] = i\hbar\epsilon^{ijk}\hat{Q}_k^-, \quad [\hat{Q}_i^+, \hat{Q}_j^-] = 0.$$ \hspace{1cm} (11)

This $SO(3) \times SO(3)$ Lie algebra can be used to describe all bound states as $|q_+, m_+, q_-, m_-\rangle$ — simultaneous eigenstates of the \hat{Q}_i^\pm and \hat{Q}_j^\pm operators. However, this description is somewhat redundant:

(e) Verify that $\hat{K} \cdot \hat{L} = \hat{L} \cdot \hat{K} = 0$ and use this fact to show that all bound states have $\hat{Q}_2^- = \hat{Q}_2^+$ and hence $q_+ = q_-$. Therefore we can label the bound states of the Coulomb potential as $|q, m_+, m_-\rangle$; their energies depend only on q and thus are $(2q+1)^2$-fold degenerate. To compute these energies:

(f) First, show that

$$\hat{K}^2 = (e^2 Z M)^2 + 2M \hat{H}(\hat{L}^2 + \hbar^2)$$ \hspace{1cm} (12)

(in classical mechanics, $K^2 = (e^2 Z M)^2 + 2M E L^2$.)

(g) Second, use Eqs. (10) and (12) to derive

$$2\hat{Q}_2^+ + 2\hat{Q}_2^- + \hbar^2 = \frac{(e^2 Z M)^2}{-2M \hat{H}}.$$ \hspace{1cm} (13)

(h) And, finally, use Eqs. (13) to show that the energy of the $|q, m_+, m_-\rangle$ bound state is

$$E_N = -\frac{M(e^2 Z)^2}{2\hbar^2(2q + 1)^2} \equiv -\frac{M(e^2 Z)^2}{2\hbar^2 N^2}.$$ \hspace{1cm} (14)

where $N \equiv 2q + 1$ is a positive integer, usually called the principal quantum number of the bound state.

(i) Show that for each value of the principal quantum number N, the orbital quantum number l takes all integer values between zero and $N - 1$.

(Hint: Use $\hat{L} = \hat{Q}_+ + \hat{Q}_-$.) Also, argue that this means that in terms of l and the radial quantum number n_r, $N = l + n_r + 1$, which implies that the spectrum of N consists of all positive integers.
3. This problem is about time-dependent perturbation theory and its relation with time-independent perturbation theory.

(a) When the potential V is time-independent, work out $\langle s|\tilde{T}(t,0)|s\rangle$ to second order and identify $\Delta^{(1)}$, $\Delta^{(2)}$ and the “wave-function renormalization” Z_i in the expansion of

$$\langle s|\tilde{T}(t,0)|s\rangle = Z_i e^{-i\Delta E t/\hbar} + \text{rapidly oscillating terms}$$

$$= Z_i - \frac{i}{\hbar} \left(\Delta_i^{(1)} + \Delta_i^{(2)} \right) t + \frac{1}{2!} \left(-\frac{i}{\hbar} \Delta_i^{(1)} t \right)^2 + \vartheta(V^3)$$

and show that they agree with the results from time-independent perturbation theory, Eqs. (5.1.42), (5.1.44) and (5.1.48b) in Sakurai. Note that this identification is done in the $t \to \infty$ limit where rapidly oscillating terms are dropped. Explain why this identification works.

(b) Now consider a harmonic perturbation $V = V_0 \cos \omega t$. Work out the second-order energy shift. Does your expression recover the result from time-independent perturbation theory in the limit $\omega \to 0$? Explain your answer.

4. This problem is about scattering in one dimension. The Lippmann-Schwinger formalism can be applied to a one-dimensional transmission-reflection problem with a finite range potential, $V(x) \neq 0$ for $0 < |x| < a$ only.

(a) Suppose that we have an incident wave coming from the left: $\langle x|\phi \rangle = e^{ikx}/\sqrt{2\pi}$. How must we handle the singular $1/(E - H_0)$ operator if we are to have a transmitted wave only for $x > a$ and a reflected wave and the original wave for $x < -a$? Is the $E \to E + i\epsilon$ prescription still correct? Obtain an expression for the appropriate Green’s function and write an integral equation for $\langle x|\psi^{(+)} \rangle$.

(b) Consider the special case of an attractive δ-function potential

$$V = -\left(\frac{\gamma \hbar^2}{2m} \right) \delta(x), \quad (\gamma > 0).$$

Solve the integral equation to obtain the transmission and reflection amplitudes.

(c) The one-dimensional δ-function potential with $\gamma > 0$ admits one and only one bound state for any value of γ. Show that the transmission and reflection amplitudes you computed have bound-state poles at the expected positions when k is regarded as a complex variable.