I) When the switch is closed the light bulb will:
A) Start off, then start glowing brighter with time.
B) Start on, then start glowing weaker with time.
C) Always be off.
D) Always be on.
E) Too complicated to explain.

When the switch is first closed the inductor will produce an Emf that is such as to oppose the current. Thus the current starts with I=0. In the long run however the inductor will behave like a regular wire, allowing all the coil to flow.

II) When the switch is closed the light bulb will:
A) Start off, then start glowing brighter with time.
B) Start on, then start glowing weaker with time.
C) Always be off.
D) Always be on.
E) Too complicated to explain.

At first the capacitor is fully discharged, so ΔV across it is zero. It thus allows the full current to flow. As time goes by the capacitor charges up, so ΔV, gets larger until eventually ΔV=V₀, and the current no longer flows.
III) In the circuit with L and C in series, after the switch closes the light bulb:
A) Will remain off.
B) Will glow briefly, then die out.
C) Will start off, and then start glowing brighter.
D) Will start off, then start glowing brighter, then die out.
E) Too complicated to explain.
This situation is indeed somewhat complicated, but we can still say something about it. We know that at $t=0$ the inductor will not allow current to flow (but the capacitor is discharged, so it will allow current to flow), and we also know that at $t=\infty$ the capacitor will be fully charged so it will not allow current to flow (while the inductor behaves like just a wire.) In between $t=0$ and $t=\infty$ there needs to be some flow of charge in order to charge up the capacitor, so the light will glow briefly. Exactly how it glows requires us to solve a complicated equation. (Most likely it will vary in brightness several times between almost on and off before going all the way off again, because the combination of the inductor and capacitor would allow oscillations to occur. These oscillations would be strongly damped out by the resistance of the lamp.)

IV) In the circuit with L and C in parallel, after the switch closes the light bulb:
A) Will remain off.
B) Will glow briefly, then die out.
C) Will start off, and then start glowing brighter.
D) Will start off, then start glowing brighter, then die out.
E) Too complicated to explain.
F) Will remain on.
G) Will start on, then dim, then go to fully on again.
This circuit is even more complicated. When you first close the switch, the capacitor allows full current to flow, so the light bulb is on. In the long run, the inductor will allow the full current to flow, so the light bulb is on. But in between? Energy would be allowed to move back and forth between the inductor and capacitor which would cause the voltage across them to vary between zero and V_0. In reality the resistance in the inductor will damp out these oscillations very quickly.
V) On this diagram there are 2 coils with a linked flux (indicated by the dotted lines). One of these 2 coils is connected to a battery, a switch and a light bulb “A”, all in series. The other coil is connected to a light bulb “B”.

When the switch is closed, the following will be seen in the light bulbs:
A) "A" will be off, "B" will be on.
B) "A" will start off, then glow brighter with time, "B" will start "on" and then dim.
C) "A" and "B" will start on, then dim.
D) "A" and "B" will start off, then glow brighter.
E) Too complicated to explain.
F) “A” will start on, then dim with time, “B” will start off and then glow brighter.

This one is pretty complicated as well, but we can analyze the situation in steps. First for bulb A. As far as this part of the circuit is concerned, it is almost the same as question 1. The linking of the flux will influence the current through A a little bit, but mostly just in the sense that it is harder to calculate actual values. So A will start off, and then glow brighter with time until it reaches full brightness. What about “B”? In that part of the circuit we have a coil with a changing flux and a light bulb. The change in flux is caused by the changing current in the other coil. This current has it’s biggest rate of change at t=0, and will eventually not change at all. So B will start “on” and then dim. It would be helpful to look at the curves of the current through A and through B: