No collaboration is permitted on the mid-term exam. You may freely use the literature, but with diligent referencing. Do not include rough notes or programming efforts; give only your final logical development in legible handwriting. Presentation will be a primary factor in grading.

1. This problem is about time-dependent perturbation theory and its relation with timeindependent perturbation theory.
(a) When the potential V is time-independent, work out $\langle s| \tilde{T}(t, 0)|s\rangle$ to second order and identify $\Delta^{(1)}, \Delta^{(2)}$ and the "wave-function renormalization" Z_{i} in the expansion of

$$
\begin{align*}
\langle s| \tilde{T}(t, 0)|s\rangle & =Z_{i} e^{-i \Delta E t / \hbar}+\text { rapidly oscillating terms } \\
& =Z_{i}-\frac{i}{\hbar}\left(\Delta_{i}^{(1)}+\Delta_{i}^{(2)}\right) t+\frac{1}{2!}\left(-\frac{i}{\hbar} \Delta_{i}^{(1)} t\right)^{2}+\vartheta\left(V^{3}\right) \tag{1}
\end{align*}
$$

and show that they agree with the results from time-independent perturbation theory, Eqs. (5.1.42), (5.1.44) and (5.1.48b) in Sakurai. Note that this identification is done in the $t \rightarrow \infty$ limit where rapidly oscillating terms are dropped. Explain why this identification works.
(b) Now consider a harmonic perturbation $V=V_{0} \cos \omega t$. Work out the second-order energy shift. Does your expression recover the result from time-independent perturbation theory in the limit $\omega \rightarrow 0$? Explain your answer.
2. This problem is about the variational method for a non-linear Schrödinger equation, which can be written as

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \nabla_{i} \nabla_{i}+g\left|\psi\left(r_{i}\right)\right|^{2}+V\left(r_{i}\right)\right] \psi\left(r_{i}\right)=\epsilon \psi\left(r_{i}\right) \tag{2}
\end{equation*}
$$

where ϵ is the eigenvalue and $V\left(r_{i}\right)=V(r)=\frac{1}{2} m \omega^{2} r^{2}$ is the potential for the harmonic oscillator. Notice that the equation is non-linear because the wavefunction appears inside the square brackets.
(a) What is the physical significance of the non-linearity? Give a specific example of a physical system that is described by a non-linear Schrödinger equation. This will probably require you to do a little research.
(b) Taking a Gaussian as your variational ansatz, miminimize the total energy subject to the constraint that the wavefunction be normalized; i.e.

$$
\begin{equation*}
\int d^{3} r\left|\psi\left(r_{i}\right)\right|^{2}=1 \tag{3}
\end{equation*}
$$

For this part you may take the problem to be one-dimensional; i.e. $r_{i} \rightarrow x$. Note that $E \neq \epsilon$, due to the non-linearity.
HINT: To find the correct object to minimize, find the functions I and F (constructed in class), which when minimized, give the non-linear Schrödinger equation (via the Euler-Lagrange equations).
(c) Next treat this problem in three dimensions. What happens for positive vs. negative coupling g ? Find the critical point for which the solution collapses to a singularity.
(d) Show that for (b) and (c) you obtain the correct result in the limit $g \rightarrow 0$. Is perturbation theory useful in this case?

