1. This problem is about the Bogoliubov transformation. A common tool in studying many-body quantum systems is the operator transform. Suppose the particle creation and annihilation operators a_{i}^{\dagger} and a_{i} can be algebraically expressed in terms of a new set of operators b_{i}^{\dagger} and b_{i} that obey the same canonical commutation relations:

$$
\begin{equation*}
\left[b_{i}, b_{j}\right]=\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right]=0 \quad\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j} \tag{1}
\end{equation*}
$$

The operators b_{i}^{\dagger} and b_{i} are often said to create/annihilate quasiparticles. The commutation relations, Eq. (1), imply that there is a unique state $|B\rangle$ that is annihilated by all b_{i}; this state is usually referred to as the quasiparticle vacuum, the states of the form $b_{i}^{\dagger}|B\rangle$ are the one-quasiparticle states, etc. Whenever the quasiparticles can be labeled by the same quantum numbers (e.g. \vec{k}) as the original bosonic particles of the theory, it is often convenient to make a unitary operator transform:

$$
\begin{equation*}
b_{i}=U a_{i} U^{\dagger}, \quad b_{i}^{\dagger}=U a_{i}^{\dagger} U^{\dagger} \tag{2}
\end{equation*}
$$

where U is a unitary operator in the Fock space, usually of the form $\exp (X)$ for some anti-hermitian polynomial X in a_{i} and a_{i}^{\dagger}.
(a) Show that the unitarity of U automatically guarantees that b_{n} and b_{n}^{\dagger} satisfy Eq. (1), and that the quasiparticle state $|B\rangle=U|0\rangle$ is the quasiparticle vacuum.
(b) Verify that for $X=\sum_{n}\left(c_{n} a_{n}^{\dagger}-c_{n}^{*} a_{n}\right)$, $\exp (X) a_{n} \exp (-X)=a_{n}-c_{n}$. This transform is a c-number shift.
(c) Now let $X=\sum_{n} \frac{1}{2} \eta_{n}\left(e^{i \lambda_{n}}\left(a_{n}^{\dagger}\right)^{2}-e^{-i \lambda_{n}}\left(a_{n}\right)^{2}\right)$ (η_{n} and λ_{n} are real). Show that for this $U=\exp (X)$, Eqs. (2) define a diagonal canonical transform:

$$
\begin{equation*}
b_{i}=a_{i} \cosh \eta_{i}-e^{i \lambda_{i}} a_{i}^{\dagger} \sinh \eta_{i}, \quad b_{i}^{\dagger}=\cosh \eta_{i} a_{i}^{\dagger}-e^{-i \lambda_{i}} \sinh \eta_{i} a_{i} \tag{3}
\end{equation*}
$$

(d) In order to see the utility of the Bogoliubov transformation, consider the simple case of one creation/annihilation operator pair with $\lambda=\pi$. We then have

$$
\begin{equation*}
b=a \cosh \eta+a^{\dagger} \sinh \eta \tag{4}
\end{equation*}
$$

Use this transformation to obtain the eigenvalues of the following Hamiltonian:

$$
\begin{equation*}
H=\hbar \omega a^{\dagger} a+\frac{1}{2} V\left(a a+a^{\dagger} a^{\dagger}\right) \tag{5}
\end{equation*}
$$

Also give the upper limit on V for which this can be done.
(e) Write down the ground state of the Hamiltonian above in terms of the number states $a^{\dagger} a|n\rangle=n|n\rangle$.

