
944 QUANTUM MECHANICS - Final Exam Due: Noon, Tuesday, 23 December,
2008

No collaboration is permitted on the final exam. You may freely use the literature, but with
diligent referencing. Do not include rough notes or programming efforts; give only your final
logical development in legible handwriting. Presentation will be a primary factor in grading.

1. This problem is about time-independent perturbation theory for a two-particle system
in a finite volume. Consider a three-dimensional cubic volume with sides each of length
L. Particles are placed inside this volume subject to periodic boundary conditions.

(a) What are the eigenstates of a single particle confined to this volume?

(b) What are the eigenstates of two non-interacting particles confined to this volume
with zero total momentum?

(c) Show that if V (r) is a two-particle interaction that depends only on the distance
r between the particles, the matrix element of the interaction in momentum space
may be reduced to
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where qi ≡ k3
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i is the momentum transfer.

(d) What is the ground state energy of two particles confined to the cubic volume
that interact with each other via an interaction
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out to second order in perturbation theory, assuming that η/L � 1? Do not
evaluate any sums or integrals that may occur.

2. This problem is about scattering in a finite volume. Consider the very low-energy
scattering of two particles interacting via the potential defined above.

(a) From the Lippmann-Schwinger equation determine the scattering amplitude out
to second order in the potential, and thereby show that

η = −
4πa

M

[

1 − 4πa
∫

d3pi

(2π)3

1

pipi + iε
+ . . .

]

, (3)

where a is the scattering length.

(b) Use this result to show that the energy shift of two particles in the cubic volume
is
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where it is understood that the limit Λj → ∞ is taken, and the sum extends over
all integer triplets up to a cutoff Λj.
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