944 QUANTUM MECHANICS - Final Exam Due: Noon, Tuesday, 23 December, 2008

No collaboration is permitted on the final exam. You may freely use the literature, but with diligent referencing. Do not include rough notes or programming efforts; give only your final logical development in legible handwriting. Presentation will be a primary factor in grading.

1. This problem is about time-independent perturbation theory for a two-particle system in a finite volume. Consider a three-dimensional cubic volume with sides each of length L. Particles are placed inside this volume subject to periodic boundary conditions.
(a) What are the eigenstates of a single particle confined to this volume?
(b) What are the eigenstates of two non-interacting particles confined to this volume with zero total momentum?
(c) Show that if $V(r)$ is a two-particle interaction that depends only on the distance r between the particles, the matrix element of the interaction in momentum space may be reduced to

$$
\begin{equation*}
\left\langle k_{i}^{3} k_{i}^{4}\right| V\left|k_{i}^{1} k_{i}^{2}\right\rangle=\delta^{3}\left(k_{i}^{1}+k_{i}^{2}-k_{i}^{3}-k_{i}^{4}\right) \frac{1}{(2 \pi)^{3}} \int d^{3} r V(r) e^{-i q_{i} r_{i}}, \tag{1}
\end{equation*}
$$

where $q_{i} \equiv k_{i}^{3}-k_{i}^{1}$ is the momentum transfer.
(d) What is the ground state energy of two particles confined to the cubic volume that interact with each other via an interaction

$$
\begin{equation*}
V=\eta \delta^{3}\left(r_{i}^{1}-r_{i}^{2}\right) \tag{2}
\end{equation*}
$$

out to second order in perturbation theory, assuming that $\eta / L \ll 1$? Do not evaluate any sums or integrals that may occur.
2. This problem is about scattering in a finite volume. Consider the very low-energy scattering of two particles interacting via the potential defined above.
(a) From the Lippmann-Schwinger equation determine the scattering amplitude out to second order in the potential, and thereby show that

$$
\begin{equation*}
\eta=-\frac{4 \pi a}{M}\left[1-4 \pi a \int \frac{d^{3} p_{i}}{(2 \pi)^{3}} \frac{1}{p_{i} p_{i}+i \epsilon}+\ldots\right] \tag{3}
\end{equation*}
$$

where a is the scattering length.
(b) Use this result to show that the energy shift of two particles in the cubic volume is

$$
\begin{equation*}
\Delta E_{0}=-\frac{4 \pi a}{M L^{3}}\left[1+\left(\frac{a}{\pi L}\right)\left(\sum_{n_{i} \neq 0}^{\Lambda_{j}} \frac{1}{n_{i} n_{i}}-4 \pi \Lambda_{j}\right)+\ldots\right] \tag{4}
\end{equation*}
$$

where it is understood that the limit $\Lambda_{j} \rightarrow \infty$ is taken, and the sum extends over all integer triplets up to a cutoff Λ_{j}.

