I. β DECAY

1. The differential decay rate for the β^- -decay reaction $A(Z, N) \to A(Z+1, N-1) + e^- + \bar{\nu}_e$ can be written as

$$d\mathcal{W} = \frac{c^6}{8\pi^5\hbar} \left(\frac{2.4G_F}{(\hbar c)^3}\right)^2 |M|^2 \delta(\Delta B - E_\nu - E_e) d^3 p_e d^3 p_v .$$
(1)

Here ΔB is the difference in the binding energies of parent and daughter nucleus. The factor 2.4 takes into account the relative coupling factors for Fermi and Gamow-Teller type transitions. The nuclear matrix element M satisfies the condition: $|M|^2 \leq 1$.

- (a) Integrate over the unobserved neutrino momentum to obtain the differential rate as a function of the electron energy. Assume that neutrinos are massless.
- (b) Next integrate over the electron momentum in order to obtain the total decay rate. How does the rate scale with $Q \equiv \Delta B m_e c^2$ in the limit $Q \gg m_e c^2$?
- (c) Estimate the total decay rate for $|M|^2 = 1$ and Q = 1 MeV as well as Q = 10 MeV.