The Proton Spin-Dependent Structure Function, g_2 , and Longitudinal Transverse Spin Polarizability at Low Q^2

Ryan Zielinski - University of New Hampshire For the Jefferson Lab Hall A E08-027 (g2p) Collaboration VINIVERSITY ONP Meeting, October 26, 2013 Jefferson Lab

Polarized Inclusive ep Scattering

- Q^2 : 4-momentum transfer
- W : invariant mass of target
- x : momentum fraction
- \mathbf{v} : E E', energy transfer
- Scattering angle: $\Theta \sim 6^{\circ}$

Spin distribution

Extracting Spin Structure

Experiment measured $\Delta \sigma_{\perp}$, essential contribution to g_2 in this kinematic region

$$g_2^p = \frac{MQ^2}{4\alpha^2} \frac{y^2}{2(1-y)(2-y)} \left(-\Delta \sigma_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} \Delta \sigma_{\perp} \right)$$

lefferson Lab

) Will use JLab Hall B EG4 data for $\Delta\sigma_{\parallel}$.

of NEW HAMPSHIRE

• Measured $\Delta\sigma_{\parallel}$ at one kinematic setting as cross-check

Motivation

ew Hampshire

Measure a fundamental spin observable (g_2^p) in the region 0.02 < Q^2 < 0.20 GeV² for the first time

- Extract δ_{LT} as a test of χPT calculations
- Test Burkhardt-Cottingham
 (BC) sum rule
- Crucial inputs for hydrogen hyperfine splitting and proton charge radius measurements

Particle Data Group (2010)

Spin LT Polarizability

$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1 + g_2] dx$$

- Can be calculated via $\chi \mathrm{PT}$
- Neutron data shows some deviations for calculated polarizabilities
 - No proton data yet!

Finite Size Effects

Hydrogen Hyperfine Splitting

- ΔE = 1420.4057517667(9)MHz $= (1+\delta)E_F$ $\delta = (\delta_{\text{QED}} + \delta_R + \delta_{\text{small}}) + \Delta_S$
- Structure correction has largest uncertainty to

theoretical calculation
$$\Delta_S = \Delta_Z + \Delta_{pol}$$

UNIVERSITY of New Hampshire

UNIVERSITY of New Hampshire

Summary

- The g2p experiment ran in spring 2012 and took data covering $M_p < W < 2GeV$ and $0.02 < Q^2 < 0.20GeV^2$
- Will provide a precision measurement of g_2^p in low Q^2 region for the first time
- Results will shed light on several physics puzzles
 - Requires low Q^2 data
- Data analysis is currently underway

THANK YOU!

E08-027 Analysis Team

Spokespeople:

Alexandre Camsonne JP Chen

Don Crabb

Karl Slifer

Post-Docs:

Kalyan Allada

Elena Long James Maxwell

Vince Sulkosky

Jixie Zhang

UNIVERSITY of NEW HAMPSHIRE

Graduate Students:

Tobias E. Badman

Melissa Cummings

Chao Gu

Min Huang

Jie Liu

Pengjia Zhu

Ryan Zielinski

