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Abstract

The integrated cross section for the incoherent photoproduction of vector mesons

on nuclei γ∗A → V X , X 6= A, is calculated within Glauber theory and as a function
of the photon energy. The inverse of the longitudinal momentum transfer is called

coherence length lc and depends on the virtuality and the energy of the photon. Nu-
clear transmission factors strongly depend on lc/RA (RA is the nuclear radius) and

this effect may interfere with the search for color transparency effects.

∗On leave of absence from Joint Institute for Nuclear Research, Laboratory of Nuclear Problems,
Dubna, 141980 Moscow Region, Russia. E-mail: bzk@dxnhd1.mpi-hd.mpg.de
†On leave of absence from Institute of Experimental Physics SAV, Solovjevova 47, CS-04353 Kosice,

Slovakia

1



With the help of the new powerful accelerators like CEBAF and HERA, which produce

high energy (real or virtual) photons, the investigation of the hadronic processes inside

nuclei (like color transparency, for example) will make substantial progress. Photons are

particularly suitable for these studies since the production vertex for hadronic probes inside

nuclei is well known and the analysis of the results is simpler and more reliable. In this

note we treat the photoproduction of vector mesons inside nuclei and their rescattering via

strong interactions within Glauber multiple scattering theory [1]. This is a simple problem

treated by a conventional well accepted method. Yet, interference effects, which have not

been treated before lead to a non-trivial energy- and Q2-dependence of the production cross

section and to unexpected phenomena. Any search for unconventional effects, like color

transparency, should should refer to our calculations as a base line.

We study the incoherent photoproduction of a vector meson V on a nucleus A, γ∗A→
V X, where X is any state of the target nucleus except the ground state |0〉. The transition

operator is given in eikonal form as

ΓγVA (~b; {~sj, zj}) =
A∑

j=1

ΓγVN (~b− ~sj) eiqLzj
A∏

k(6=j)

[
1 − ΓV VN (~b− ~sk) Θ(zk − zj)

]
, (1)

where {~sj, zj} denote the coordinates of the target nucleon Nj. ΓγVN is the vector meson pho-

toproduction amplitude on a nucleon, while ΓV VN describes the elastic scattering amplitude

for the vector meson on a nucleon. The Θ-function allows vector meson rescattering only

on those nucleons k, which lie “behind” the production point, i.e. zk > zj. The momentum

qL, which appears in the phase factor in eq. (1) is the difference between the longitudinal

momenta of the photon and of the produced vector meson

qL = pγ − pLV =
Q2 +M2

V + (pTV )2

2ν
. (2)

The quantity qL, which depends on the energy ν and the virtuality Q2 of the photon plays

the central role in our consideration. Its inverse lc = 1/qL is called the coherence length.

Because of the phase factor in eq. (1), the photon production amplitude on two nucleons

with positions |zi − zf | < lc add up coherently, otherwise there is destructive interference.
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The incoherent cross section for the production of a vector meson with transverse mo-

mentum pTV in a reaction, where the nuclear state changes from |0〉 to |f〉 (f 6= 0) is given

in Glauber theory by

dσγVinc(0→ f)

d2pTV
=

∣∣∣∣∣

∫
d2b

2π
exp(−i ~pTV ~b)

〈
f
∣∣∣ΓγVA (~b)

∣∣∣ 0
〉∣∣∣∣∣

2

, (3)

from which one obtains the total incoherent cross section σγVinc by integrating over ~pTV and

summing over all final states |f〉 with the exclusion of the ground state:

σγVinc =
∫
d2b

[
〈0|
∣∣∣ΓγVA (b)

∣∣∣
2 |0〉 −

∣∣∣〈0|ΓγVA |0〉
∣∣∣
2
]
. (4)

We introduce the simplifying assumption

ΓγVN (b) = λV ΓV VN (b) , (5)

where λV is a constant, which equals to e/fV in the vector dominance model. Eq. (5) is a

good approximation as long as the widths of the profile functions ΓγVN and ΓV VN are small

compared to the nuclear radius. We also use the relations for the elementary scattering

processes of a vector meson on a nucleon

1

2
σVNtot =

∫
d2b Re ΓV VN (b) , (6)

σVNel =
∫
d2b

∣∣∣ΓV VN (b)
∣∣∣
2
.

Furthermore, the nuclear wave function |0〉 is assumed to be a product of single particle

wave functions and to be completely described by the density distribution ρ(~r), which is

normalized to A. In order to bring out the essential effects, which are associated with the

coherence length lc = 1/qL, we evaluate the incoherent cross section eq. (4) for two limiting

cases, qL → 0 (high energy) and qL →∞ (low energy), before we give the exact expression.

For both limiting cases simple analytical formulae can be derived.

In the high energy limit, qL → 0, the phase factor exp(iqLz) can be dropped in eq. (1),

and after some algebra one finds
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ΓγVA (~b; {~si}) = λV



1 −

∏

j

[
1− ΓV VN (~b− ~sj)

]


 = ΓV VA (~b; {~si}) , (7)

where ΓV VA is the Glauber amplitude for the scattering of the vector meson V by the nucleus

A. Using eqs. (4), (6) and (7), the incoherent cross section can be evaluated to give

σγVinc = λ2
V

∫
d2b

[
e−σ

V N
in T (b) − e−σV Ntot T (b)

]
, (8)

where T (b) =
∫∞
−∞ dz ρ(b, z) is the nuclear thickness function, and σVNin = σVNtot −σVNel . Note

that eq. (8) has, up to the factor λ2
V , the same form as the expression (see in [3]) for the

cross section of quasielastic scattering of a hadron (V ) on a nucleus. In the low energy limit,

when qL � R−1
A (RA being the nuclear radius) all expressions which explicitly contain the

phase factor go to zero, e.g.

〈
0
∣∣∣ΓγVA

∣∣∣ 0
〉

= 0 . (9)

In the expression

〈0|
∣∣∣ΓγVA

∣∣∣
2 |0〉 = λ2

V

〈
0

∣∣∣∣∣∣
∑

i,j

ΓV VN (~b− ~si) ΓV V
∗

N (~b− ~sj) eiqL(zi−zj ) ×

∏

k(6=i)

[
1− ΓV VN (~b− ~sk)Θ(zk − zi)

] ∏

l(6=j)

[
1− ΓV V

∗
N (~b− ~sl)Θ(zl − zj)

]
∣∣∣∣∣∣
0

〉
(10)

all terms with i 6= j do not contribute to the matrix element and one is left with

σγVinc = λ2
V σVNel

∫
d2b

∞∫

−∞
dz ρ(b, z) e−σ

V N
in Tz(b) , (11)

where Tz(b) =
∫∞
z dz′ρ(b, z′).

The low and high energy limits, eqs. (11) and (8), respectively, were derived also in [4].

In order to expose the difference between these expressions we consider the case where the

elastic V N cross section is small σVNel T (b)� 1. Then we find
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σγVinc = σ(γ∗N → V N)
∫
d2b

∞∫

−∞
dz ρ(b, z) ×





e−σ
V N
in Tz(b) (low energy)

e−σ
V N
in T (b) (high energy) ,

(12)

where σ(γ∗N → V N) = λ2
V σ

VN
el is the photoproduction cross section on a nucleon. The two

limiting cases, for low and high energies, respectively, differ in the attenuation factors. The

integration in eq. (12) goes over all points (b, z) for the photoproduction vertex γ∗N → V N .

In the low energy limit, the attenuation of the outgoing vector meson is governed by the

Tz(b), which is the nuclear thickness experienced by the vector meson from the point of

creation (~b, z) until its exit from the nucleus. This is what is expected.

At high energy, on the other hand, the attenuation is governed by T (b) = Tz=−∞(b),

which is the thickness of the nucleus along the total path (the summed paths of the photon

and the vector meson). The attenuation is governed by the same σVNin independently of

whether it acts on the incoming photon or the outgoing vector meson. We have to conclude

that at high energies the photon has already converted to a virtual vector meson long before

the vector meson is put on the energy shell via an interaction with a target nucleon at

(~b, z). This interpretation is familiar from the vector dominance model (VDM) [2], which

predicts that at high energies a photon behaves in strong interactions like a hadron. Or the

same phenomenon expressed in quantum mechanical language: because of the uncertainty

principle a photon can convert virtually into a vector meson. The lifetime ∆t of such a

fluctuation in the lab. frame is estimated to be ∆t ∼ 1/qL. If ∆t � 1/RA the chances

are large that the incoming photon is already in the virtual state of a vector meson and

therefore experiences a strong absorption before the fluctuation is put on the energy shell.

Note that we have not used the vector dominance model, but only eq. (5), which is

rather general. However, the laws of quantum mechanics have been properly accounted for

in eq. (1). Taking all the interference terms in the multiple scattering series into account

leads to the different attenuations at low and high energies, i.e. for qL → ∞ and qL → 0,

respectively.
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What is the proper scale, which separates high and low energies? There are a two

dimensioned scales in the multiple scattering series, the nuclear radius RA, and the mean

free path of the vector meson in nuclear matter lfree ≈ 1/σV Nin ρ0 (≈ 3 fm for ρ−meson).

Condition lc � LA = min{RA; lfree} defines low and lc � LA high energies, where lc = 1/qL

can be interpreted as the length, which a quantum mechanical fluctuation γ → V → γ

travels if it has the speed of light. We call lc the coherence length.

The general expression for the incoherent photoproduction cross section on a nucleus can

be also calculated from the expression eq. (4). The result is a somewhat lengthy expression

σγVinc = σ(γN → V N)
∫
d2b





∞∫

−∞
dz ρ(b, z) e−σ

V N
in Tz(b) +

1

2

σVNtot
σVNel

(σVNin − σVNel )

∞∫

−∞
dz1 ρ(b, z1)

∞∫

z1

dz2 ρ(b, z2) ×

cos [qL(z2 − z1)] exp
[
−1

2
(σVNin − σVNel ) Tz2(b)−

1

2
σVNtot Tz1(b)

]
−

1

4

(
σVNtot

)2

σVNel

∣∣∣∣∣∣

∞∫

−∞
dz ρ(b, z) eiqLz e−

1
2
σV Ntot Tz(b)

∣∣∣∣∣∣

2



, (13)

where the last term in the curly brakets is the cross section for coherent production γA→
V A [2]. Formula (13) for incoherent photoproduction is new and is the main result of the

present paper.

In the two limits qL → 0 and qL → ∞ formula(13) leads to expressions (8) and (11),

respectively, as it should be. As an illustration we show numerical examples for the effect

of the coherence length. We calculate the nuclear transmission function TrγV (qL, A), which

is defined by

TrγV (qL, A) =
σinc(γA→ V X; qL)

A σ(γN → V N)
, (14)

for the incoherent photoproduction of ρ-mesons as a function of the energy. The results for

carbon, iron and lead are shown in Fig. 1 (one can find more examples in [5]) as a function

of the energy ν and the virtuality Q2 of the photon. Both quantities appear in qL eq. (2).
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The transverse momentum pTV in eq. (2) has been set equal zero. The cross sections which

enter the calculation are σρNtot = 25 mb and σVNel = (σVNtot )2/16πBVN
el , where BρN

el ≈ 8 GeV −2

is the slope of the differential cross section of elastic ρN scattering.

Figure 1: Nuclear transparency for incoherent photoproduction of ρ-

mesons on C,Fe and Pb nuclei as a function of the photon energy ν and

for values Q2 of the virtuality of the photon between 0 and 10 (GeV/c)2.

The numerical results in Fig. 1 display a strong variation of the nuclear transparency as

a function of ν and Q2. The numerical values in the low and high energy limits (qL → ∞
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and qL → 0, respectively obey the approximate relation

Tr(qL → 0) ≈ [Tr(qL →∞)]2. (15)

The half value between the low and high energy limits is reached for (qL · RA) ' 1.5,

where RA = 1.2A1/3 fm.

Although eq. (13) can be evaluated numerically in a rather straightforward way, as is

done for Fig. 1, we have also looked for approximate expressions for the nuclear transparency.

In the limit of small attenuation, σVNin · 〈T 〉 � 1, the transparency becomes

TrγV (qL, A) ≈
{

1− 1

2
σVNin 〈T 〉

[
1 + F 2

A(qL)
]}

, (16)

where FA is the nuclear formfactor

F 2
A(qL) =

1

A 〈T 〉
∫
d2b

∣∣∣∣∣∣

∞∫

−∞
dz ρ(b, z) eiqLz

∣∣∣∣∣∣

2

, (17)

and

〈T 〉 =
1

A

∫
d3r ρ(~r) T (b) (18)

is the mean nuclear thickness. For qLRA � 1 (low energy) one has FA → 0, but FA → 1 if

qLRA � 1 (high energy). The corresponding transparencies differ by a factor of two in the

second term in the square brackets in eq. (16). The approximate formulae may be good for

J/ψ photoproduction as it was suggested in [6], but fails for the ρ-meson.

We have presented a fully quantum mechanical derivation for the incoherent photonpro-

duction of vector mesons off nuclei using Glauber’s formalism of multiple scattering theory.

Strong energy and Q2 dependencies are predicted, which arise from interference effects,

which essentially depend on the coherence length lc = 1/qL. For low energies, lc → 0, one

recovers the classical picture of a vector meson produced inside the nucleus and attenuated

on its way out. In the other limit of high energies, lc →∞, the incoming photon is already

a virtual vector meson and thus experiences attenuation before it converts to the on-shell

meson. This strong dependence on qL leads to a rising Q2-dependence at fixed energy (see

examples in [5]) and has to be accounted for before one may look for effects like color

transparency.
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