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Boltzmann’s Entropy Equation

lnS k W=

The entropy and the number of microstates of a specific system are connected 
through the Boltzmann’s entropy equation (1896):

0S∆ ≥2nd Law of 
Termodynamics:

For a closed system, entropy can only increase, it can never decrease.
For an irreversible process the entropy increases.
For a reversible process the change in entropy is zero.

Some Definitions
The configuration of a system is some measurable state in which the system 
resides. 
Example1: 6 molecules are distributed 4 on the left, 2 on the right.
Example2: A gas on n mole in a volume V has temperature T and pressure P.

The number of microstates for a configuration is the number of ways in which the 
configuration can be put together. This number of ways is called the multiplicity, 
W, of the configuration.

We find the number of microstates by “counting” them. There are mathematical 
methods for counting (combinatorics) that help us. The factorial (N!) is one such 
tool. N! is the number of ways in which N items (particles, spin states) can be 
arranged. It is equal to: N!=N*(N-1)*(N-2)…(2)*(1). 

When counting microstates, we have to be careful to not count states twice (or 
more). Since usually we deal with molecules that can not be distinguished from 
each other (since they are identical) we need to make sure we divide out all the 
ways in which the molecules can be arranged in their state.
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Some Examples.
Sixty particles in a box, no division between left 
and right. Then the number of microstates is:

60! 1
60!

W = =

Ten particles in a box, with 2 distinct sides, so a 
particle is either on the left or on the right. We 
have 6 particles on the left, 4 on the right:

10! 210
6!4!

W = =

Ten particles in a box, with 3 distinct regions, left, 
middle, right, filled with 5,3,2 particles resp.

10! 2520
5!3!2!

W = =

One hundred particles in a box, 10 regions, each 
region has 10 particles: ( )

92
10

100! 2.36 10
10!

W = = i

Entropy – Thermodynamic View
Rudolf Clausius (1865):
Entropy is the amount of thermal energy put into a system that can not be 
extracted as work.
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In a cyclic process, you can convert heat in to work (i.e. a steam engine). 
However, you can never convert all the heat fully into work, some of it is lost.

At constant temperature we have:
QS
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Entropy as State Function
If entropy is a state function, then the entropy of a system is the same whenever it is 
in the same state. Thus a cyclic process must have ∆S=0. 

For an ideal gas we can write down the change in entropy between 2 states as:
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Engines
In a thermodynamic sense, engines turn heat into work. No engine can convert all 
the heat at the input into work, some heat must be discharged. Thus, and engine 
needs a hot reservoir for heat input, and a cold reservoir for heat output. You 
cannot extract work when you have no temperature difference.

Any Ideal Engine:

For any ideal engine we use a gas that does work in a cyclic process, 
each step of this process is reversible, thus for one full cycle, for the gas: 
∆P=0, ∆V=0, ∆T=0, ∆Eint=0, ∆S=0.
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Carnot Engine
Ideal Carnot Engine:

In a Carnot Engine the gas absorbs heat during an isothermal expansion 
at TH, then adiabatically expands to TL, then releases heat during an 
isothermal contraction at TL, and finally contracts further adiabatically to 
come back to the initial temperature TH

Properties:
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