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A many-body expansion for the computation of the charge form factor in the center-of-
mass system is proposed. For convergence testing purposes, we apply our formalism to the
case of the harmonic oscillator shell model, where an exact solution exists. We also work out
the details of the calculation involving realistic nuclear wave functions. Results obtained for
the Argonne v18 two-nucleon and Urbana-IX three-nucleon interactions are reported. No
corrections due to the meson-exchange charge density are taken into account.
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I. INTRODUCTION

One of the successes of the shell-model picture has been
the ability to calculate self-consistent densities for nuclear
ground states that not only reproduce experimental bind-
ing energies but also experimental charge radii of these
nuclei and generally nuclear charge densities. The excel-
lent agreement or remaining discrepancies have been a
cornerstone for advancing our understanding of the nu-
clear wave function. In particular, the ability to predict
both heavy and light nuclei is taken as a confirmation
of the quality of the effective nuclear interaction used in
the calculations. For that reason it is useful to exam-
ine the accuracy with which the nuclear densities can be
calculated.

For the proper description of the scattering process,
one assumes a nuclear wave function that factorizes into
a nuclear center-of-mass wave function, which is taken to
be a plane wave, and an intrinsic wave function of coordi-
nates relative to the center-of-mass. The difficulty lies in
the ansatz of the wave function as a Slater determinant.
Such a wave function generally does not factorize into
a center-of-mass wave function and a wave function for
the nucleus relative to its center-of-mass. Furthermore,
for the cases where it factorizes, the center-of-mass wave
function is not a plane wave. While this is negligible
for heavy nuclei, it is a significant correction for nuclei
like 16O.

This problem has been known for a long time. It can be
solved exactly for a single Slater determinant of harmonic
oscillator single-particle wave functions. In that case it
has been shown that the wave function factorizes with
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a center-of-mass wave function being a Gaussian. This
allows us to calculate the form factor, i.e. the Fourier
transform of the density, in the form

Fsd(q) = e−
1
4 b2q2/A Fint(q) (1.1)

given in terms of the harmonic oscillator length param-
eter b. The calculation usually gives the form factor of
the one-body density labeled Fsd(q), whereas the experi-
ment requires the form factor with respect to the center-
of-mass, labeled Fint(q). Because of this exact result,
it has been customary to apply such a correction also
in cases where the single-particle wave functions are not
harmonic oscillator wave functions and where the pres-
ence of correlations has been substituted by an effective
interaction.

An alternate way to deal with this is to calculate di-
rectly the form factor in the center-of-mass system. This
way the operator can be written as a series of one-body,
two-body, ..., to A-body terms. In this paper we first
compare such an expansion with the exact result for the
case where such a result is available. We then apply the
same expansion to a realistic wave function of 16O [?]
and compare it to the corrections implied by Eq. (??).
This nuclear wave function was derived for 16O using cor-
relations of the form exp(S) together with the Argonne
v18 potential [?] that provides an excellent fit to the
nucleon-nucleon scattering and thus must be considered
as a realistic interaction. The nuclear interaction also
includes a phenomenological (Urbana-IX) three-nucleon
interaction [?]. Thus, in this paper we hope to shed some
light on the reliability of such center-of-mass corrections.

II. THE FORM FACTOR OF THE DENSITY

The charge form factor at momentum transfer ~q is
given in Born approximation [?] by
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Fint(~q) = 〈φ0 |
∑

k

fk(q2) ei~q·~r′k |φ0〉 ,

where φ0 is the translationally invariant ground state, ~r′k
the distance from the center-of-mass to the kth “point”
nucleon, and fk(q2) the nucleon form factor, which takes
into account the finite size of the nucleon k.

The center-of-mass correction has to do with the fact
that the origin of the shell model is not the same as
the center-of-mass of the nucleus. Since the many-body
Hamiltonian is not translationally invariant, then the
model ground state Φ(M)

0 is not translationally invari-
ant either, and thus can lead to an incorrect description
of observables, especially in small A nuclei.

What we need to establish is the relationship between
the model quantities expressed in terms of the coordi-
nates of the laboratory system (~rk, k = 1 . . . A) and the
intrinsic ones (~r′k = ~rk− ~Rcm, k = 1 . . . A−1), measured
from the center-of-mass of the nucleus

~Rcm =
1
A

A∑

k=1

~rk .

Formally, this may be viewed as a change of coordinates,
from the coordinates of the laboratory system ~rk to the
coordinates of the center-of-mass system {~Rcm, ~r′k}, fol-
lowed by the removal of the dependence upon ~Rcm from
the model wave function Φ(M)

0 , i.e. we have to construct
the intrinsic wave function [?]

φ
(M)
0 (~r′k) =

∫
G(~Rcm)Φ(M)

0 (~Rcm, ~r′k) d~Rcm ,

independent of ~Rcm, for an arbitrary function G(~Rcm).
Note here that, in this formalism, the Gartenhaus-
Schwartz transformation [?,?] corresponds to taking
G(~Rcm) = δ(~Rcm). Since there is no reason to choose
a particular G(~Rcm), it has been pointed out that the
center-of-mass correction for a given model wave func-
tion is not uniquely defined [?]. Nevertheless, the vari-
ous recipes yield the same result in the limit of the exact
wave function of a free nucleus [?].

The exact nuclear wave function Φ0 consists of two
factors, one of which is a plane wave in the center-of-
mass coordinate, ei ~P ·~Rcm , the other being the intrinsic
wave function φ0 of the relative coordinates [?] ~r′k,

Φ0(~r1 · · ·~rA) = ei ~P ·~Rcm φ0(~r′1 · · · ~r′A−1) .

For an approximate model wave function Φ(M)
0 , however,

all we can hope for is to be able to obtain the decompo-
sition

Φ(M)
0 (~r1 · · ·~rA) = φcm(~Rcm) φ

(M)
0 (~r′1 · · · ~r′A−1) ,

which is approximately correct to the extent that the
motion of the intrinsic coordinates and the center-of-mass
are not correlated. Only then, the factorization

Fsd(~q) = Fcm(~q) Fint(~q) (2.1)

is possible. To that approximation, and assuming that
the model provides indeed a good description of the in-
ternal structure of the nucleus (Φ0 = Φ(M)

0 [?]), Eq. (??)
is valid with [?]

Fint(~q) = 〈Φ(M)
0 |

∑

k

fk(q2) ei~q·(~rk−~Rcm) |Φ(M)
0 〉 (2.2)

and

Fcm(~q) = 〈Φ(M)
0 | ei~q·~Rcm |Φ(M)

0 〉 .

The form factor (??) can now be calculated directly by
carrying out an expansion in terms of many-body oper-
ators

Fint(~q) =
∑

k

fk(q2)

〈
ei~q·~rk(A−1)/A

∏

m 6=k

e−i~q·~rm/A

〉
.

(2.3)

Each exponential in Eq. (??) can be expressed in terms
of the one-body operator which we define by

f(~q · ~rm) = ei~q·~rm − 1 .

With this we write the form factor as

Fint(~q) =
∑

k

fk(q2)

×
〈

ei~q·~rk(A−1)/A
∏

m 6=k

(1 + f∗(~q · ~rm/A))

〉

or

Fint(~q) =
∑

k

fk(q2)
〈
ei~q·~rk(A−1)/A

〉

+
∑

k

fk(q2)
∑

m 6=k

〈
ei~q·~rk(A−1)/A f∗(~q · ~rm/A)

〉

+
1
2

∑

k

fk(q2)
∑

m,n 6=k

×
〈
ei~q·~rk(A−1)/Af∗(~q · ~rm/A)f∗(~q · ~rn/A)

〉
+ · · · . (2.4)

We intend to apply our formalism to the particular case
of doubly magic nuclei (16O). Thus, we can use the spher-
ical symmetry of the nucleus to simplify calculations, in
the sense that the form factor Fint(~q) should be spheri-
cally symmetric too, and we can in turn average the form
factor over the directions of ~q. Then, we introduce

F
(av)
int (q) =

1
4π

∫
Fint(~q) dΩq .

This allows us to write the different terms in equa-
tion (??) using the second quantization formalism, as
follows:
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1. One-body term
∑

αβ

fα(q2) 〈α | O(q, ~r1)|β〉 a†αaβ , (2.5)

with

O(q, ~r1) = j0(qr1(A− 1)/A) .

2. Two-body term
∑

L

(2L + 1)

×
∑

αβγδ

fα(q2) 〈αβ | O(q, ~r1, ~r2) | γδ〉 a†αa†βaδaγ ,

(2.6)

with

O(q, ~r1, ~r2) = jL(qr1(A− 1)/A) fL(qr2/A)

×
(
C

(L)
1 ¯ C

(L)
2

)
.

3. Three-body term
∑

L1L2L3

iL1−L2−L3(2L2 + 1)(2L3 + 1)〈L30 L20 |L10〉

×
∑

αβγδθζ

fα(q2) 〈αβγ | O(q, ~r1, ~r2, ~r3) | δθζ〉

× a†αa†βa†γaζaθaδ , (2.7)

with

O(q, ~r1, ~r2, ~r3)
= jL1(qr1(A− 1)/A) fL2(qr2/A) fL3(qr3/A)

×
(

C
(L1)
1 ¯

[
C

(L2)
2 ⊗ C

(L3)
3

](L1)
)

,

where we have introduced fl(qr) = jl(qr) − δl0. Here

jl(qr) and C
(l)
m =

√
4π

2l+1 Ylm(r̂) are the spherical Bessel
functions of order l and the unnormalized spherical
harmonics of rank l and component m, respectively.
Greek letters label the single-particle states |α〉 =
|nα (lαsα)jαmjα ; ταmτα〉, with s = 1

2 , τ = 1
2 , j = l ± 1

2

and mτ = + 1
2 (− 1

2 ) – for a proton (neutron). As a final
remark, note that the conversion to second quantization
allows for all restrictions in the sums (??) to be dropped.

III. HARMONIC OSCILLATOR SHELL-MODEL
CALCULATION

Equation (??) is always exact if Φ(M)
0 is expressed in

terms of harmonic oscillator wave functions, provided

that the center-of-mass wave function φcm is in one given
harmonic oscillator state. Then, the extraction of the
center-of-mass coordinate can be done analytically. El-
liott and Skyrme [?] have shown that if the shell-model
states are non-spurious, then the center-of-mass moves
in its ground state and is described by the 1s harmonic
oscillator wave function

φcm(~Rcm) =
(

A3

π3 b6

) 1
4

exp
[
−AR2

cm

2 b2

]
,

where b is the harmonic oscillator length parameter. The
center-of-mass form factor can also be evaluated explic-
itly

Fcm(~q) = e−
1
4 b2q2/A .

The correct translation-invariant form factor is thus given
in terms of the shell-model form factor by

Fint(~q) = e
1
4 b2q2/A Fsd(~q) , (3.1)

i.e. Fsd must be corrected by dividing by Fcm(q). Note
that since the uniqueness of the procedure of carrying
out the center-of-mass corrections has been questioned,
the use of Eq. (??) has been suggested even in the case
of a more general nuclear structure model [?].

We exploit the analytical nature of these results by
testing how fast the many-body expansion (??) con-
verges. The shell-model wave function Φ(M)

0 for the har-
monic oscillator potential is an independent particle wave
function, represented by a simple Slater determinant of
single-particle orbits. This state is what we call the un-
correlated ground state |0〉. By taking the expectation
value in the model ground state Φ(M)

0 = |0〉 of the one-,
two- and three-body operators in Eqs. (??), (??), and
(??), the following relevant expectation values are ob-
tained

〈0 |a†αaβ | 0〉 = δαβ

〈0 |a†αa†βaδaγ | 0〉 = δαγδβδ − δαδδβγ

〈0 |a†αa†βa†γaζaθaδ | 0〉 = δαδ (δβθδγζ − δβζδγθ)

− δαθ (δβδδγζ − δβζδγδ)
+ δαζ (δβδδγθ − δβθδγδ) .

Using these results and following a straightforward but
laborious calculation, the translation-invariant form fac-
tor for the harmonic oscillator shell model can be com-
puted completely up to the third-order in the many-body
expansion (??). The various components involved are
presented here by their corresponding term of origin in
the many-body expansion. Summations over all (nlj)
indices are implicit. Notations are discussed in an Ap-
pendix.
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a. One-body term. There is only one contribution to
the one-body term of F

(av)
int (q)

HO1 = fnlj(q2) I
(1) 0
nl,nl .

Note that in the previous equation, HO1 is actually the
Fourier transform of the one-body density folded with
the appropriate nucleon form factor, i.e.

HO1 = fp(q2)
∫ ∞

0

ρ
(p)
0 (r) j0(A−1

A qr) r2 dr

+ fn(q2)
∫ ∞

0

ρ
(n)
0 (r) j0(A−1

A qr) r2 dr ,

where ρ
(p)
0 (r) and ρ

(n)
0 (r) are the proton and neutron

one-body densities, respectively, corresponding to the un-
correlated ground state |0〉.

b. Two-body term. Two components contribute to
the two-body term of F

(av)
int (q)

* one component corresponding to the direct contrac-
tion δαγδβδ

HO2dr = fn1l1j1(q
2)I(1) 0

n1l1j1,n1l1j1
I
(2) 0
n2l2j2,n2l2j2

;

* one component associated with the exchange con-
traction δαγδβδ

HO2ex = fn1l1j1, n2l2j2(q
2)

∑

L

(2L + 1)

×Ī
(1) L
n1l1j1,n2l2j2

Ī
(2) L
n1l1j1,n2l2j2

;

where the pair of indices of the nucleon form factor f(q2)
indicate that the two orbits denoted as (n1l1j1) and
(n2l2j2) have the same isospin.

c. Three-body term. The three-body term contains
six contributions to F

(av)
int , out of which two are identical

due to the fact that, in Eq. (??), the radial and angular
parts of the operator dependent upon the coordinates of
the second nucleon are the same as the radial and angular
parts of the operator dependent upon the coordinates of
the third nucleon. The different components of the three-
body term (??) are listed below

* term 3.1 (δαδδβθδγζ)

HO31 = fn1l1j1(q
2)I(1) 0

n1l1j1,n1l1j1
I
(2) 0
n2l2j2,n2l2j2

I
(2) 0
n3l3j3,n3l3j3

;

* term 3.2 (δαδδβζδγθ)

HO32 = −fn1l1j1(q
2)I(1) 0

n1l1j1,n1l1j1∑

L

(−1)L(2L + 1)(Ī(2) L
n2l2j2,n3l3j3

)2 ;

* term 3.3 (δαθδβδδγζ) is equal to term 3.6 (δαζδβθδγδ)

HO33 = HO36

= −fn1l1j1, n2l2j2(q
2)I(2) 0

n3l3j3,n3l3j3

×
∑

L

(2L + 1)Ī(1) L
n1l1j1,n2l2j2

Ī
(2) L
n1l1j1,n2l2j2

;

* term 3.4 (δαθδβζδγδ) is equal to term 3.5 (δαζδβδδγθ)

HO34 = HO35 = −fn1l1j1, n3l3j3(q
2)

×
∑

L2

(2L2 + 1)
∑

L3

(2L3 + 1)
∑

L1

iL1+L2+L3

×
√

2L1 + 1〈L20 L30 |L10〉





L3

L1

L2

j1
j2
j3





×Ī
(1) L1
n1l1j1,n3l3j3

Ī
(2) L2
n2l2j2,n1l1j1

Ī
(2) L3
n3l3j3,n2l2j2

;

In Figs. ?? and ?? we illustrate the convergence of
the many-body expansion for the case of the 4He and
16O nuclei, respectively. The solid line represents the ex-
act form factor in the center-of-mass system, as given by
Eq. (??). The agreement is excellent for a momentum
transfer q < 3 fm−1 and remains reasonably good for q
up to 4 fm−1. It is expected that the size of the con-
tributions due to correlations (as presented in the next
section) is more important than the error made by ig-
noring higher-order terms in the many-body expansion
(??). Also, it is worthwhile mentioning that a correc-
tion expected to become increasingly important for high
values of the momentum transfer is the contribution due
to the meson-exchange charge density [?]. However, the
inclusion of this correction is beyond the purpose of the
present discussion.

We conclude that truncating the calculation at the
third-order gives us a good approximation of the center-
of-mass correction for the independent-particle model
wave function case. Note that leaving out the three-body
term in the case of the 4He nucleus would result in an
unacceptable description of the form factor distribution
– false minima are located at a momentum transfer q as
low as 3.6 fm−1 – whereas in the case of the 16O nucleus,
the charge form factor changes very little by including
the three-body term. This is an indication that expres-
sion (??) can be viewed effectively as a 1/A power expan-
sion of the charge form factor. Therefore, as we consider
the applicability of the expansion (??) for higher values of
A, it appears that we can safely drop higher-order terms
in the many-body expansion and still hope for a good
description of the charge form factor.

To conclude our study of the convergence of the many-
body expansion, let us investigate the influence a given
order of approximation has on the inferred mean square
charge (rms) radius. It is well known that in the low q
limit, the form factor may be be expanded in a power
series as

Fint(q) = 1 − 1
6

q2 〈r2〉 + · · · ,

and thus is a measure of the rms radius. Table ?? shows
the convergence of the rms radius for the case of the 4He
and 16O nuclei. These results show that the rms radius
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is little affected by any corrections beyond the two-body
term of the expansion (??). By including the three-body
term in Eq. (??), the rms radius remains virtually the
same in the 4He case, and changes by less than 1% in the
16O case.

IV. REALISTIC NUCLEAR WAVE FUNCTION
USING THE exp(S) METHOD

We shall apply now our formalism to the case of a
more complicated model wave function Φ(M)

0 and the
particular case of the 16O nucleus. As advertised, the
nuclear wave function Φ(M)

0 = |0̃〉, has been obtained us-
ing the coupled cluster method (or the exp(S) method)
together with a realistic interaction [?]. The exact cor-
related ground state ket wave function |0̃〉 is written in
terms of the uncorrelated ground state |0〉 as

|0̃〉 = eS† |0〉 . (4.1)

Here, S† is the cluster correlation operator, which may be
decomposed in terms of ph-creation operators (O†

0 = 1,
O†

1 = a†p1
ah1 , O†

2 = a†p1
a†p2

ah2ah1) as

S† =
∞∑

n=0

1
n!

SnO†
n .

The expectation value of an arbitrary operator A in
the energy eigenstate (??) may be written as

Ā = 〈0 | eS Ae−S S̃† | 0〉 ,

where similarly to S†, S̃† is defined by its decomposition
in terms of ph-creation operators

S̃† =
∑

n

1
n!

S̃nO†
n .

Therefore, the correct translation-invariant form fac-
tor is given by the expectation value of the operator Fint

in the correlated ground state |0̃〉. As we have previ-
ously [?] worked out the one- and two-body densities for
the ground state, we can apply these results to evaluate
the first two terms in this expansion.

Using the definition of the one-body density

ρ(~r) =
∑
m

〈0̃ | δ(~r − ~rm) | 0̃〉 ,

together with the identity

ei~q·~rk =
∫

d~r ei~q·~r δ(~r − ~rk) ,

we can write the first term of Eq. (??) as

A1 = fp(q2)
∫

d~r ei~q·~r(A−1)/A ρ(p)(~r)

+ fn(q2)
∫

d~r ei~q·~r(A−1)/A ρ(n)(~r) .

Here, ρ(p)(~r) and ρ(n)(~r) are the proton and neutron
ground state one-body densities, which include correc-
tions due to 2p2h, 3p3h, and 4p4h correlations.

Similarly, we can write the second term as a double
integral over the ground state two-body density using

ρ(~r1, ~r2) =
∑
mn

〈0̃ | δ(~r1 − ~rm) δ(~r2 − ~rn) | 0̃〉 .

Then, the second term of Eq. (??) becomes

A2 = fp(q2)
∫

d~r

∫
d~r′ ei~q·~r(A−1)/A f∗(~q · ~r′/A)

[
ρ(p,p)(~r, ~r′) + ρ(p,n)(~r, ~r′)

]

+ fn(q2)
∫

d~r

∫
d~r′ ei~q·~r(A−1)/A f∗(~q · ~r′/A)

[
ρ(n,p)(~r, ~r′) + ρ(n,n)(~r, ~r′)

]
.

With these evaluations we include all the terms that were
included in evaluating the one- and two-body densities.

Let us note here that the approximation (A1+A2) is
insufficient in order to get an exact value of the rms ra-
dius. Fortunately, we find that the three-body density
contributes to the q2-dependence of the form factor only
through the term in which L1 = 0 (see Eq. (??)). Thus,
in order to get the proper low q dependence exactly up
to powers of q2, we only need to include the term

A3p = A1(q)
∫

d~r

∫
d~r′ f∗(~q · ~r/A) f∗(~q · ~r′/A)

×
[
ρ(p,p)(r, r′) + ρ(p,n)(r, r′) + ρ(n,p)(r, r′) + ρ(n,n)(r, r′)

]
.

We conclude that the one- and two-body densities are
sufficient to calculate an exact rms radius by using the
approximation (A1+A2+A3p). However, one should not
attempt to use A3p indiscriminately as a charge form fac-
tor correction for an arbitrary value of q, since A3p is not
a consistent approximation of the three-body term, A3,
in Eq. (??). Any attempt of including A3, by an approx-
imation short of a consistent approximation of the three-
body density itself, will introduce uncontrollable errors in
the calculation of the charge form factor. Therefore, A3p

will be considered only in the calculation of the rms ra-
dius, which then typically changes by less than 4%. This
seems to indicate that the correction due to the three-
body term in Eq. (??) is, in general, small, hopefully
smaller than other effects we leave out at this time (like
the contributions due to the meson-exchange charge den-
sity), and shall henceforth be ignored in the calculation
of the charge form factor.
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V. RESULTS AND CONCLUSIONS

The problem of center-of-mass corrections in calcu-
lating observables has been worked out by expanding
the center-of-mass correction as many-body operators.
We have applied this expansion to the case of the har-
monic oscillator where an exact solution exists. We found
reasonable convergence in the case of harmonic oscilla-
tor wave functions. Thus we have confidence that this
method can be applied to general Hartree-Fock wave
functions and in a situation where 2p2h-correlations are
present.

Figures ?? and ?? show the various effects of the corre-
lations on the internal charge form factor, corresponding
to calculations using the Argonne v18 together with the
Urbana-IX potential. We also compare the various ap-
proximations of the form factor with the internal form
factor suggested by Eq. (??), which in both cases is plot-
ted as a dotted line.

In the calculation of the translational invariant charge
form factor, correlations enter at two places. First, the
calculation of the one-body operator (A1) includes ef-
fects of all the correlations, because this term is sim-
ply the Fourier transform of the one-body density. In
Fig. ??, the solid and dashed lines represent the Fourier
transform of the one-body density corresponding to the
uncorrelated (|0〉) and correlated (|0̃〉) ground state, re-
spectively. These form factors are denoted SM1[ρ0(r)]
and SM1[ρ(r)]. Here, the main effect of the correlations
is the shifting of the diffraction minimum by 5% to the
right. The new minimum is also predicted by Eq. (??),
which also has a higher tail compared to SM1[ρ0(r)] and
SM1[ρ(r)].

Secondly, as any expectation value taken in the cor-
related ground state, the center-of mass corrections are
modified due to the correlations. In Fig. ??, the solid
and dashed lines represent the two-body approximations
of the translational invariant form factor. Going beyond
the leading order (SM2) in evaluating the two-body term
(A2) leaves the first diffraction minimum virtually un-
changed. However, the high q behavior of the form factor,
(q > 2.5fm−1), is dramatically affected. We can see that
the (A1+A2) approximation of the internal charge form
factor exhibits a second diffraction minimum, which has
been observed experimentally by Sick and McCarthy [?],
and its presence makes our theory credible. Physically
speaking, the hole in the two-body density affects the
center-of-mass motion and thus the center-of-mass cor-
rection to be applied.
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APPENDIX: NOTATIONS

We present here the various notations used in the text.
We have

I
(1) L
n1l1j1,n2l2j2

= (2j1 δ(n1l1j1),(n2l2j2) + 1)

×
∫ ∞

0

HOn1l1(r)HOn2l2(r)jL(qr(A− 1)/A) r2dr .

I
(2) L
n1l1j1,n2l2j2

= (2j1 δ(n1l1j1),(n2l2j2) + 1)

×
∫ ∞

0

HOn1l1(r)HOn2l2(r)fL(qr/A) r2dr ,

where HOnl(r) are the usual radial harmonic oscillator
wave functions. The symbol δ(n1l1j1),(n2l2j2) is one where
the set of indices (n1l1j1) and (n2l2j2) represent the same
single-particle wave function, and zero otherwise. We
also introduce

Ī
(1,2) L
n1l1j1,n2l2j2

= 〈(l1 1
2 )j1 ||C(L) || (l2 1

2 )j2〉 I
(1,2) L
n1l1j!,n2l2j2

.

The reduced matrix element of the unnormalized spher-
ical harmonic operator of rank k is

〈
(la 1

2 ) ja

∥∥∥C(k)
∥∥∥ (lb 1

2 ) jb

〉

= (−1)ja+k+ 3
2

√
(2ja + 1)(2jb + 1)

(2k + 1)
〈ja

1
2 jb

1
2 | k 0〉

for |l1− l2| ≤ k ≤ l1 + l2 and |j1− j2| ≤ k ≤ j1 + j2 , and
zero otherwise.
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FIG. 1. Convergence of the many-body expansion (2.4) of
the charge form factor for the harmonic oscillator shell-model
case and a 4He-like nucleus.

FIG. 2. Same as Fig. 1, except for a 16O-like nucleus.

FIG. 3. 16O nucleus: SM1[ρ0(r)] and SM1[ρ(r)] form fac-
tors compared with the internal form factor calculated ac-
cording to Eq. (3.1) for the Argonne v18 and Urbana-IX po-
tentials.
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FIG. 4. 16O nucleus: Two-body approximations of the
translational invariant form factor compared with the internal
form factor calculated according to Eq. (3.1) for the Argonne
v18 and Urbana-IX potentials.

TABLE I. Convergence of the mean square charge radius
for the case of the 4He and 16O-like nuclei.

Order of approximation
4He
16O

HO1
1.285979
2.250000
HO1 + HO2
1.484927
2.371708
HO1 + HO2 + HO3
1.484922
2.349467

exact value
1.484924
2.349468
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