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We use the coupled cluster expansion (exp(S) method) to generate the complete ground
state correlations due to the NN interaction. Part of this procedure is the calculation of
the two-body G matrix inside the nucleus in which it is being used. This formalism is being
applied to 16O in a configuration space of 50 h̄ω. The resulting ground state wave function
is used to calculate the binding energy and one- and two-body densities for the ground state
of 16O.

PACS numbers: 21.60.-n, 21.60.Gx, 21.60.Cs, 21.60.Jz, 21.10.Ft

I. INTRODUCTION

In the last thirty years electron scattering from nuclei
has provided a wealth of information mapping out nu-
clear ground state charge densities [?], providing precise
transition charge and current densities for the excitation
of single particle states [?] and for collective states [?].
The measurement of ground state magnetization densi-
ties and the excitation of high multipolarity magnetic
excitations, or the single particle knockout reaction to
discrete states all have in some way supported the mean-
field approach as the lowest order in the description of
nuclear structure.

The confirmation of the mean-field approach, however,
were more qualitative in nature than quantitative. The
form factors e.g. for the excitation of the high spin sin-
gle particle states in 208Pb [?], were described extremely
well in shape by the mean-field wave functions, however,
the predicted strength was too big by a factor of two.
The knockout reactions again were in good agreement
with the shapes predicted by the mean-field wave func-
tions but the strength was off by again roughly a factor of
two [?]. The general conclusion was that correlations are
important in the calculation of observables. They do not
change the shape of the wave functions but they mod-
ify the strength due to deoccupation of orbits below the
Fermi surface and partial occupation of the orbits above
the Fermi surface [?]. This was confirmed by (e,e′p) ex-
periments in which particles from orbits above the Fermi
level were knocked out [?]. Thus, to do justice to the ac-
curacy of the electromagnetic probe, we can no longer be
satisfied with the mean-field approach but have to take
into account the correlations largely due to the hard re-
pulsive core of the nucleon-nucleon interaction. While we
put particular emphasis on the effects of correlations on
the results of electron scattering experiments this is less

∗e-mail:Jochen.Heisenberg@unh.edu
†e-mail:Bogdan.Mihaila@unh.edu

of an issue in this paper dealing with the ground state,
but will be more clearly pointed out in subsequent papers
dealing with excited states of these nuclei.

There are different ways to account for correlations.
One way is to introduce correlation functions in the many
body wave function in real space. This has been quite
successful for small nuclei [?] and has resulted in rea-
sonable descriptions of the 16O nucleus [?]. A different
approach is to add in configuration space to the uncor-
related ground state multi-particle multi-hole configu-
rations. Both approaches can be related to each other
even though it seems harder using correlation functions
to satisfy the Pauli principle. In configuration space this
appears to be more transparent. In our treatment we
follow closely the formulation of the Bochum group [?].
However, we solve the equations entirely in configuration
space. Furthermore, we truncate in different ways where
the significance of terms becomes more transparent

II. THE UNCORRELATED GROUND STATE

We assume an orthonormal set of single particle wave
functions exists. These wave functions are solutions to
the single particle Hamiltonian given by the Schrödinger
equation in the mean-field. This mean-field will be gen-
erated in an iterative procedure. The single particle wave
functions are expanded in a set of orthonormal functions
such as harmonic oscillator functions, Bessel functions
or others. Thus each orbit is represented by a set of
expansion coefficients and a single particle energy. An
uncorrelated ground state can be constructed as a single
Slater determinant which includes all the occupied orbits
and is written as |0〉, our new vacuum state.

III. VARIATIONAL CALCULATIONS FOR THE
CORRELATED GROUND STATE

We use the formalism of second quantisation. As such
we follow the notation of the textbook by deShalit and
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Feshbach [?]. In the second quantisation representation
we write the Hamiltonian of a closed shell nucleus as

H = Tk1k2 a†k1
ak2 +

1
4

Vk1k2k3k4 a†k1
a†k2

ak4 ak3 ,

(3.1)

where the Einstein summation convention is understood
and Vk1k2k3k4 are fully anti-symmetric matrix elements of
the potential. The orbits completely occupied in a non-
correlated ground state are called “hole orbits”, those
not occupied are called “particle orbits”. Creation and
destruction operators in these orbits are denoted a†p, a†h,
and ap, ah, respectively. Thus, we have

a†h |0〉 = 0 ; ap |0〉 = 0 . (3.2)

The correlated ground state is assumed to be of the
form

|0̃〉 = eS† |0〉 = (1 + F†) |0〉 . (3.3)

Here S† is the operator that describes the correlation. It
is written as

S† =
∑

n

S†n , (3.4)

where

S†1 =
∑

ph

Zph a†pah ,

S†2 =
1

(2!)2
∑

p1h1,p2h2

Zp1h1,p2h2 a†p1
a†p2

ah2 ah1 ,

S†3 =
1

(3!)2
∑

· · · . (3.5)

or correspondingly F†. The purpose of the variational
calculation is to determine all the coefficients Z.

We will further assume that there exists at least one
set of wave functions, satisfying the condition that S1 =0.
Further down we will discuss how to construct such a set.
This set is the set of single particle mean-field wave func-
tions. With that basis the lowest order of correlations
are the 2p2h correlations. Also, S2 and F2 are the same
as well as S3 and F3, whereas F4 = S4 + S2

2/2, etc.
A variation δ|0̃〉 orthogonal to the correlated ground

state can be constructed from any operator C†
n repre-

senting any npnh-excitation as

δ |0̃〉 = e−S C†
n e−S† |0̃〉 = e−S C†

n |0〉 . (3.6)

We have

〈0̃| δ |0̃〉 = 〈0| C†
n |0〉 = 0 . (3.7)

The variational principle requires that the Hamiltonian
between the ground state and such a variation vanishes.
Thus, we have

〈0̃| H δ |0̃〉 = 〈0| eS H e−S C†
n |0〉 = 0 . (3.8)

Choosing C†
n to be 1p1h, or 2p2h, ..., ApAh results in a

set of nonlinear coupled equations that are written out
in more detail in the next section. We might say that
eSHe−S represents the effective Hamiltonian as Eq. (??)
represents the Hartree-Fock condition for the uncorre-
lated ground state with this effective Hamiltonian.

A. The effective one-body Hamiltonian

To simplify the accounting of number of ph-excitations
we use indices for the Hamiltonian. Explicitly we define

V20 =
1
4
Vp1p2h1h2a

†
p1

a†p2
ah2ah1 = V†

02 ,

V10 =
1
2
Vp1p2h1p3a

†
p1

a†p2
ap3ah1

+
1
2
Vp1h2h1h3a

†
p1

a†h2
ah3ah1 = V†

01 ,

V00 = Vp1h2h1p2a
†
p1

a†h2
ap2ah1

+
1
4
Vp1p2p3p4a

†
p1

a†p2
ap4ap3

+
1
4
Vh1h2h3h4a

†
h1

a†h2
ah4ah3 ,

T0 = Tk1k2 a†k1
ak2 . (3.9)

We should take note that any Sn commutes with V02.
We introduce the mean-field Hamiltonian H0 as

H0 = T0 + U0 , (3.10)

where T0 is the kinetic energy operator and U0 is the
mean-field to be specified below. We will assume that the
orbits are eigenfunctions of this mean-field Hamiltonian
H0 with

[
H0, a†p

]
= εpa†p , [H0, ah] = − εhah . (3.11)

We use Eq. (??) with n = 1, C†
1 = a†pah, where we

write a†pah |0〉 = |1p1h〉 to obtain the equation establish-
ing S1

0 = 〈0|
{
T0 + V01 +

[
S1,T0

]
+

[
S1,V00

]
+

[
S2,V10

]
+

[
S3,V20

]
+

1
2

[
S1,

[
S1,V10

]]
+

[
S1,

[
S2,V20

]]

+
1
6

[
S1,

[
S1,

[
S1,V20

]]]}
|1p1h〉 . (3.12)

There are similar equations that determine S2,S3, . . ..
While these equations hold in any basis, there is one ba-
sis of particular convenience. This is the maximum over-
lap basis in which S1 vanishes. Equation (??) results in
the solution S1 = 0 if the terms that do not contain S1
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vanish. The mean-field basis is determined by the con-
dition of the vanishing of S1 and in the mean-field basis
we must have

0 = 〈0|
{

(H0 −U0) + V01

+
[
S2,V10

]
+

[
S3,V20

] }
|1p1h〉 . (3.13)

Using Eq. (??), we can show that the expectation value
〈0|H0|1p1h〉 vanishes. Therefore, Eq. (??) becomes

〈0|U0|1p1h〉 = 〈0|
{
V01 +

[
S2,V10

]
+

[
S3,V20

]}|1p1h〉 .

(3.14)

Thus those terms establish the elements in the one-
body Hamiltonian matrix that connect p and h orbits.
The equations establishing the higher order correlations
in the mean-field basis are

0 = 〈0|
{
V02 +

[
S2,V00

]
+

[
S2,H0

]− [
S2,U0

]

+
[
S3,V10

]
+

[
S4,V20

]
+

1
2

[
S2,

[
S2,V20

]]}|2p2h〉 ,

(3.15)

0 = 〈0|
{[

S2,V01

]
+

[
S3,V00

]
+

[
S3,H0

]− [
S3,U0

]

+
[
S4,V10

]
+

[
S5,V20

]
+

1
2

[
S2,

[
S2,V10

]]

+
[
S3,

[
S2,V20

]]}|3p3h〉 , (3.16)

0 = 〈0|
{[

S3,V01

]
+

[
S4,V00

]
+

[
S4,H0

]− [
S4,U0

]

+
[
S5,V10

]
+

[
S6,V20

]
+

1
2

[
S2,

[
S2,V00

]]

+
[
S3,

[
S2,V10

]]
+

[
S4,

[
S2,V20

]]

+
1
2

[
S3,

[
S3,V20

]]
+

1
6

[
S2,

[
S2,

[
S2,V20

]]]}
|4p4h〉 .

(3.17)

At this point we will assume that the orbits are eigen-
functions to the single particle Hamiltonian H0. This
allows us to solve these equations as

〈0|S2|2p2h〉 = −〈0|
{
V02 +

[
S2,V00

]− [
S2,U0

]

+
[
S3,V10

]
+

[
S4,V20

]

+
1
2

[
S2,

[
S2,V20

]]} 1
H0

|2p2h〉 , (3.18)

〈0|S3|3p3h〉 = −〈0|
{[

S2,V01

]
+

[
S3,V00

]− [
S3,U0

]

+
[
S4,V10

]
+

[
S5,V20

]
+

1
2

[
S2,

[
S2,V10

]]

+
[
S3,

[
S2,V20

]]} 1
H0

|3p3h〉 . (3.19)

A similar equation allows us to isolate S4 using Eq. (??).
If we restrict ourselves to a situation in which only

2p2h correlations are present, S2 and F2 become identi-
cal. Then, Eq. (??) can be written in its adjoint form
as

F†2 = − 1
H0

(V + VF†2) . (3.20)

This equation is essentially the Bethe-Goldstone equation
for the G-matrix which is normally written as [?]

G†(ω) = V
[
1 +

1
ω −H0

G†(ω)
]

. (3.21)

Multiplying this equation from the left with 1/(ω−H0),
using F†2 = [ω −H0)]

−1 G†(ω) and setting ω = 0, results
in Eq. (??) for F†2. Thus, one of the essential parts of the
coupled cluster expansion is that we calculate the ground
state two-body G-matrix inside the nucleus where it is to
be applied. The additional terms in our coupled equa-
tions indicate the need for appropriate corrections in the
G-matrix for the presence of 3p3h, 4p4h, etc. correlations.
In most cases the G-matrix is calculated in nuclear mat-
ter and then applied to finite nuclei. However, in nuclear
matter the correlation function extends up to infinity and
thus cannot be applied to a finite nucleus.

We estimate that in our basis there are about 106

2p2h configurations and about 1010 3p3h configurations.
While the number of 2p2h configurations is quite acces-
sible, the number of 3p3h configurations is prohibitively
large, and we cannot store all these numbers. Thus we
have to implicitly correct for the presence of these cor-
relations. We do this by inserting the solutions for Sn

with n≥3 back into the equations and thereby obtaining
a perturbation expansion in 1/Eph. We write this equa-
tion out up to second order for the Eq. (??) establishing
the mean-field

〈0|U0|1p1h〉 = 〈0|V01|1p1h〉+ 〈0|[S2,V10

]|1p1h〉
−〈0|

[[
S2,V01

]
,

1
H0

V20

]
|1p1h〉

−1
2
〈0|

[[
S2,

[
S2,V10

]]
,

1
H0

V20

]
|1p1h〉

+〈0|
[[[

S2,V01

]
,

1
H0

V00

]
,

1
H0

V20

]
|1p1h〉 . (3.22)

This equation establishes the matrix elements of the
single particle Hamiltonian H0 between particle and hole
orbits. The matrix elements between hole and hole orbits
or between particle and particle orbits are not defined,
and any definition may be chosen. As long as U0 is ex-
plicitly kept on the right hand side of Eqs. (??, ??) the
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explicit choice is merely a question of how fast the re-
sulting series will converge. However, a reasonable choice
appears to be that form that we obtain if we replace in
the matrix elements obtained in Eq. (??) the hole orbit
with a particle orbit in order to get the matrix elements
between particle and particle orbits and we change the
particle orbit into a hole orbit in order to get the ma-
trix elements between hole and hole orbits. Reference [?]
gives a detailed account of the contributions included in
our mean-field as given by Eq. (??). Our choice for the
other matrix elements corresponds simply in turning the
hole line into a particle line or vice versa.

The mean-field orbits are the eigenvectors of this ma-
trix, and the eigenvalues are the single particle energies.
This procedure now fully defines the mean-field used here
even though its definition is not unique.

To obtain values for the amplitudes of S2 we start with
Eq. (??) and replace S3 by Eq. (??) and correspondingly
S4. We continue with these replacements, resulting again
in an expansion in 1/Eph for S2.

The calculation of the correlations breaks down into
two steps: In step one the two-body correlations are com-
puted according to Eq. (??) where the curly brackets give
the various contributions to the effective 〈p1h1|Vph|h2p2〉
matrix element. In step two the single particle energy
tensor is calculated from the kinetic energy, the direct po-
tential energy, and the correlation energy. The eigenval-
ues and the eigenvectors of the energy tensor give the new
single particle energies and the new single particle func-
tions. The two steps are iterated until a self-consistent
solution is obtained, i.e. the energy tensor is diagonal.

As we use an infinite expansion we must truncate that
expansion. We find that terms connecting to effective
one-body terms give the major contributions, two-body
terms are less important. Generally, we have included
all terms that are written as product of three two-body
operators. Of those terms written as product of four
two-body operators we have included those terms where
at least two operators connect to a one-body operator.
This results in all the quenching terms for the products
of two two-body operators. We have also included those
terms that look like the terms of the products of three
two-body operators with a renormalized interaction. We
found that these corrections are equally significant for
those terms arising from S4 and those arising from S3.
Left out are mostly those terms that required several
angular momentum recouplings. Contributions from S5

show up only if one considers products of more than four
two-body operators. In the Ref. [?] we have listed explic-
itly the relations and approximations that we have used
in this calculation.

IV. NUMERICAL CALCULATIONS FOR 16O

We have solved the main Eq. (??) that determines the
2p2h-amplitudes and thus essentially the ground state

G-matrix for 16O in a space of 50 h̄ω with a harmonic
oscillator length parameter b=0.8 fm, excluding those or-
bits with l ≥ 13. Corrections for 3p3h correlations were
included in a reduced space of 30 h̄ω and l ≤ 6, while
correlations due to 4p4h correlations were included in
the full space. We used the Argonne v18 potential [?]
to generate the matrix elements [?]. For comparison, re-
sults for the Argonne v8 and v14 potentials are reported.
Here, the Argonne v8 potential is the reprojection of the
Argonne v14 potential in the sense of reference [?].

The Hamiltonian is given in the center-of-mass as

Hint =
A∑

i

1
2m

~p2
i +

A∑

i<j

V (~ri −~rj) − TCM , (4.1)

where TCM ≡ ~P 2/2M is the kinetic energy operator of
the center-of-mass, and M is the total mass. This repre-
sents the energy in the center-of-mass frame. It can be
rewritten as

Hint =
(

1− 1
A

) A∑

i=1

1
2m

p2
i

+
A∑

i<j=1

[
V (~ri − ~rj) − ~pi · ~pj

Am

]
. (4.2)

The last term is treated as part of the internal potential,
and the antisymmetric matrix elements of the internal
potential include this center-of-mass correction term.

A. Ground state expectation values for arbitrary
operators

Ground state expectation values can be evaluated by
introducing the operator S̃†, as described e.g. in the
review by Bishop [?]. We take the ground state as

|0̃〉 = eS† |0〉 . (4.3)

We have defined {C†
n} as the complete set of 1p1h, 2p2h,

..., ApAh excitations. The normalized expectation value
ā of any operator A, ā = 〈A〉, can be worked out as

ā =
〈0| eS A eS† |0〉

〈0̃ | 0̃〉 =
〈0| eS A e−S eS eS† |0〉

〈0̃ | 0̃〉 .

(4.4)

By inserting the unity operator in the {C†
n |0〉} basis, we

obtain

ā = 〈0| eS A e−S |0〉

+
∑

n

〈0| eS A e−S C†
n |0〉

〈0| eS Cn eS† |0〉
〈0̃ | 0̃〉 . (4.5)

4



The expectation value on the right is by definition c̄n,
the expectation value of Cn. Thus we can define the new
operator

S̃† =
∞∑

n=1

c̄n C†
n . (4.6)

With this, the expectation value for any operator can be
expressed as

ā = 〈0| eS A e−S
(
1 + S̃†

)
|0〉 . (4.7)

The operators S̃† can be obtained by solving Eq. (??) in
an iterative fashion. Explicitly we write S̃† in the same
form as Eq. (??), but use the amplitudes S instead of Z
to distinguish it from S†.

B. Ground state binding energy

We first apply the above formalism to the ground state
binding energy. The expectation value of the internal
Hamiltonian can be written as

ē = 〈0| eS Hint e−S |0〉 . (4.8)

Because of the Hartree-Fock (HF) condition expressed in
Eq. (??) the terms involving S̃† vanish and we get

ē = 〈0| eS H e−S |0〉 . (4.9)

Assuming that H is at most a two-body operator and
taking into account that S1 vanishes, we write this as

〈E〉 = ē = 〈0| H |0〉 + 〈0| S2 V20 |0〉 . (4.10)

When we evaluate the expectation values of the opera-
tors in the above equation, we have to consider that the
hole orbits are not diagonal with respect to any of these
operators. Also, as we have used the HF condition this
expression does not give an upper limit of the ground
state energy unless we are exactly at the minimum. In
terms of matrix elements the energy can be written as

〈E〉 =
∑

h1h2

Th1,h2 +
1
2

∑

h1h2

Vh1h2,h1h2

+
1
4

∑

p1p2h1h2

Zp1p2,h1h2 Vp1p2,h1h2 . (4.11)

The use of Eq. (??) for the energy implies that all the
correlations are present and satisfy the Eqs. (??). In
that case the resulting energy could be taken as an upper
bound to the true energy. However, in solving these equa-
tions we have ignored some of the couplings back into S2.
As a result Eq.(??) is no longer exact and the feature of
being an upper bound to the true energy is lost. We be-
lieve that the errors due to the truncations are reasonably

small. However, more experience is needed with some of
the terms left out in order to reduce the uncertainties in
the result. Table ?? shows the resulting binding energy
for the Argonne v8, v14 and v18 potentials.

Our Hilbert space is controlled by two cut-off param-
eters lmax and nmax, which are related to the size of the
Hilbert space as Nmax = 2nmax + lmax. We have stud-
ied the dependence of the binding energy on these two
parameters. Figure ?? displays the lmax dependence and
shows reasonable convergence for lmax = 11. This de-
pendence was mapped out with nmax=25. We have also
checked the sensitivity of the binding energy with respect
to nmax with a fixed lmax. In this case, we find that for
our choice of a 30 h̄ω 3p3h space, the binding energy is
independent of nmax for an nmax value between 22 and
25. As we go to larger nmax values however, we start
seeing the effect of having a smaller 3p3h space and the
approximation starts breaking down. The dependence
of the binding energy on the nmax cut-off is depicted in
Fig. ?? for lmax=11.

C. Ground state one-body density

Next, we apply this procedure to the ground state
one-body density. The expressions necessarily look more
complex as we cannot apply the HF condition to simplify
the expressions.

By definition, the ground state one-body density is in-
troduced as

ρ(~r) =
A∑

k=1

〈 δ(~r − ~rk) 〉 . (4.12)

Since we are dealing with a spherically symmetric system,
we shall integrate out the angular degrees of freedom of
the system. Then, we write the density operator in the
second quantisation representation as

ρop(r) =
∑

αβ

ραβ(r) a†α aβ . (4.13)

Here we use ραβ(r) = Rα(r) Rβ(r) to denote the radial
part of the expectation value 〈α | δ(~r−~r′) |β〉. Thus, we
can write the ground state density as

ρ(r) =
∑

αβ

dαβ Rα(r) Rβ(r) , (4.14)

where

da,b = 〈 a†α aβ 〉 (4.15)

is the density matrix. The density matrix is a real sym-
metric matrix with positive definite eigenvalues. We can
make a basis transformation such that the density matrix
becomes diagonal. This basis represents the “natural”
orbits. In this basis the density becomes
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ρ(r) =
∑

a

vnat
a

[
Rnat

a (r)
]2

. (4.16)

Here vnat
a represents the occupation probability of these

natural orbits. This is the only basis in which occupation
probabilities have a meaning.

To calculate the one-body density matrix we use
Eq. (??) with Eq. (??)

dαβ = 〈0 | a†αaβ | 0〉 + 〈0 | [
S2, a†αaβ

]
S̃†2 | 0〉

+ 〈0 | a†αaβ S̃†1 | 0〉 + 〈0 | [
S2, a†αaβ

]
S̃†1 | 0〉

+ 〈0 | [
S3, a†αaβ

]
S̃†2 | 0〉 + 〈0 | [

S3, a†αaβ

]
S̃†3 | 0〉

+
1
2
〈0 | [

S2,
[
S2, a†αaβ

]]
S̃†3 | 0〉 + · · · . (4.17)

In evaluating terms of equal order we have to consider S2

to be of order 1/Eph, S3 to be of order 1/E2
ph, S4 to be

of order 1/E3
ph, etc. To account for S3 and S4 we have to

use the expansions of Eq. (??). As S1 vanishes, S̃1 is of
the same order as S3. Otherwise S̃n is of the same order
as Sn.

The one-body density calculated this way is not the
density in the center-of-mass frame of the nucleus as the
wave function represents a nucleus that has a residual
center-of-mass motion. The form factor measured in ex-
periments is the form factor in the center-of-mass frame
which we can write as

f(q) =
∑

j

〈 ei~q·(~rj−~Rcm) 〉 = 〈 ei~q·~rj 〉 〈 e−i~q·~Rcm 〉 .

(4.18)

i.e. the form factor calculated from the one-body den-
sity factorizes into the form factor in the center-of-mass
frame and the form factor of the center-of-mass motion
Fcm(q) = 〈e−i~q·~Rcm〉.

It has been shown that for a pure uncorrelated har-
monic oscillator wave function this form factor can be
written as Fcm(q) = exp(−b2q2/4A) where b is the har-
monic oscillator length parameter. There are two rea-
sons why this does not apply here. First, we have self-
consistent mean-field wave functions and not harmonic
oscillator wave functions and second, we have not a sin-
gle Slater determinant but a sum over many due to
the correlations. For these reasons we chose to evalu-
ate the form factor directly using Eq. (??). By writing
~Rcm = 1

A

∑
i ~ri, the Eq. (??) is expanded into n-body

terms. This expansion was checked for the case of a sin-
gle Slater determinant of harmonic oscillator functions
against the exact result. It was found that this expan-
sion is quite satisfactory if all terms up to three-body
terms are kept [?].

Fig. ?? shows the calculated charge density after fold-
ing the proton point density with the charge density of
the proton and folding the neutron point density with the
charge density of the neutron. As this expansion is accu-
rate up to terms of order q4, it encompasses the result of

the rms-radius. At the present time no corrections due
to the meson-exchange charge density are taken into ac-
count. The resulting charge radii are shown in Table ??
for the Argonne v8, v14 and v18 potentials, respectively,
and are reasonably close to the experimental one.

In the calculation of the natural orbits we also gener-
ate the occupation probabilities for the orbits above the
Fermi level. For the Argonne v8, v14 and v18 potentials
the occupation probabilities of the 1d5/2 and the 2s1/2

proton orbits are summarized in Table ?? and appear to
be consistent with the experiment [?], which establishes
a lower limit for these values.

D. Ground state two-body density

A direct presentation of the short range correlation can
be seen in the ground state two-body density. We start
with the ground state two-body density definition

ρ(~r1, ~r2) =
∑

ij

〈0̃ | δ(~r1 − ~ri) δ(~r2 − ~rj) | 0̃〉 . (4.19)

In the second quantization representation the two-body
density operator can be written as

ρop(~r1, ~r2) =
∑

αβγδ

〈αβ | ρ(~r1, ~r2) | γδ〉 a†α a†β aδ aγ .

(4.20)

Using the completeness relationship of the spherical har-
monics we can evaluate the matrix element ραβγδ

〈αβ | ρ(~r1, ~r2) | γδ〉
=

∑

l1m1

Rα(r1)Rγ(r1)Y ∗
l1m1

(r̂1) 〈jαmα |Yl2m2 | jγmγ〉

×
∑

l2m2

Rβ(r2)Rδ(r2)Yl2m2(r̂2) 〈jβmβ |Y ∗
l2m2

| jδmδ〉 .

(4.21)

In order to be consistent with the phase convention of
the two-body potential matrix elements, we couple the
two-body density matrix elements using the ph angular
momentum coupling conventions [?]. Then, the angular
momentum coupled density is

〈(αγ̄)λ | ρλµ(~r1, ~r2) | (δβ̄)λ〉
= ρλ

αγ(r1) ρλ
δβ(r2)

1
2λ + 1

Y ∗
λµ(r̂1) Yλµ(r̂2) . (4.22)

Here we have introduced the one-body multipole density
ρλ

αβ(r) which is

= (−)jα+1/2 Rα(r)Rβ(r) 〈jα ‖Yλµ ‖ jβ〉
= (−)λ+1

√
(2jα + 1) (2jβ + 1)

〈jα1/2 jβ − 1/2 | λ0〉 Rα(r)Rβ(r) (4.23)
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if lα + lβ + λ is even, and zero otherwise.
For a spherically symmetric (spin=0) nucleus it is more

relevant to calculate ρ(r1, r2, θ12) as due to the spherical
symmetry the two-body density is dependent on the di-
rection of ~r1 relative to ~r2 alone. Thus, we can perform
an average over the directions of ~r2. This translates into
carrying out the sum over the µ component of the angular
momentum λ. We obtain the result

ρλ
αβγδ(r1, r2, θ12) = ρλ

αγ(r1) ρλ
δβ(r2) Pλ(cosθ12) (4.24)

We now discuss the most dominant contributions. We
again apply Eq. (??) to evaluate the two-body density
matrix, 〈 a†α a†β aδ aγ 〉. With this, we get the ground
state two-body density as

ρ(r1, r2, θ12)

= 〈0 | ρop
2 | 0〉 + 〈0 | ρop

2 S̃†2 | 0〉 + 〈0 |S2ρ
op
2 | 0〉

+ 〈0 | [S2, ρop
2 ] S̃†2 | 0〉 + 〈0 | ρop

2 S̃†1 | 0〉
+

1
2
〈0 | [S2, [S2, ρop

2 ]] S̃†2 | 0〉+ · · · . (4.25)

(a)Contributions from bare ground state:

ρ(r1, r2, θ12)

=
∑

h1h2

(2jh1 + 1) R2
h1

(r1) (2jh2 + 1) R2
h2

(r2) (4.26)

This term has the structure ρhf (1)ρhf (2). Here ρhf is the
bare one-body density. We can include all higher order
one-body density terms by adding

∆ρ(r1, r2, θ12) = ∆ρ(r1)ρhf (r2) + ρhf (r1)∆ρ(r2) ,

(4.27)

where ∆ρ(r) is the difference between the full one-body
density minus the bare one-body density. In turn, in
higher order terms we have to exclude those terms where
in the operator ραβγδ α connects with γ or β connects
with δ. However, we still have to consider the exchange
terms where α connects with δ and β connects with γ.

The exchange term is due to the Pauli correlations and
results in

∆ρ(r1, r2, θ12)

= −
∑

h1h2

∑

l

ρl
h1h2

(r1) ρl
h1h2

(r2) Pl(cosθ12) . (4.28)

(b) Contributions linear in the 2p2h-amplitudes. For
the following terms we assume a summation over all or-
bits appearing twice in the expression. The leading term
that arises from the correlations is

∆ρ(r1, r2, θ12) =
∑

λ

(
Sλ

p1h1p2h2
+ Zλ

p1h1p2h2

)

×ρλ
h1p1

(r1)ρλ
p2h2

(r2)Pλ(cosθ12) . (4.29)

In our application we have included all terms up to
second order. Aside from the terms listed here, the next
most important correction arises from the second order
term depending on S2 and S̃†2.

The two-body density represents the probability of
finding one nucleon at ~r1 and one nucleon at ~r2. We can
divide this by the probability of finding the first nucleon
at ~r1. The remaining density represents the probability
of finding a second nucleon at ~r2 if the first nucleon is
at ~r1. If both nucleons are protons, this density is nor-
malised to a total integral of (Z-1). Figs. ?? to ?? show
these densities as a function of ~r2 for various positions
of ~r1. We have made no attempt to correct these for
the residual center-of-mass motion of the nucleus. The
densities show the effects of the short range repulsion:
they exhibit a deep hole where the first nucleon is lo-
cated. The two-body densities also show that for large
distances the long-range aspect of the ground state nu-
clear correlations, usually thought to be related with the
surface deformation modes, has a significant contribu-
tion: when the first nucleon is located closer to the nu-
clear surface, we observe an enhancement of the density
at the symmetrically-opposite position. The picture of a
two-body density obtained as the revolution of the spher-
ically symmetric one-body density, with a Gaussian-like
distribution centered at the location of the first nucleon
scooped out of it, is definitely insufficient.

V. CONCLUSIONS

We use the coupled cluster expansion (exp(S) method)
to solve the many-body Schrödinger equation in configu-
ration space. While the coupled cluster expansion is ex-
act if carried out to all orders, the present results are ob-
tained with truncations. As we have retained only terms
up to second order in 1/ε the contributions from S5 have
no effect on S2. In turn, the effects of any higher n cor-
relations are only of the order as the higher order terms
left out anyway. Thus, in essence we have replaced the
truncations in Sn by the more relevant truncation in 1/ε.

We have shown that it is possible to choose large
enough configuration spaces for the complete and self-
consistent calculation of the ground state correlations in-
side a finite nucleus. This calculation makes no artificial
separation between “short range” and “long range” cor-
relations. In fact, the two-body density shows that the
correlation function in the surface region of the nucleus
has strong contributions from the surface deformation
modes. It is largely these modes that cause the strong
deoccupation of orbits close to the Fermi surface. The
occupation of the 2s1/2 and the 1d5/2 proton orbits cal-
culated is consistent with the values suggested by the
experiments.

Our efforts are currently directed in two directions.
First, we intend to apply the procedure described in this
paper to the particular case of a more realistic interac-
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tion, namely the Argonne v18 potential [?] together with
a phenomenological three-nucleon interaction [?]. This
should not only result in a better description of the 16O
observables, but a breakdown of the contributions to the
binding from the two- and the three-body interactions
could be inferred also. Secondly, we shall use the equa-
tion of motion technique to calculate excited states of the
16O nucleus, and the ground state and excited states of
the neighboring nuclei (e.g. 15N). We hope to be able to
present our findings in the near future.
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TABLE I. Energy expectation values, charge radii, and
proton orbits occupation probabilities, for the Argonne v8,
v14 and v18 potentials, respectively.

Potential
E
rms
1d5/2

2s1/2

[MeV/nucleon]
[fm]
[%]
[%]

v8
- 7.0
2.81
3.68
4.09
v14
- 6.1
2.86
3.33
3.99
v18
- 5.9
2.81
2.58
2.75

expt.
- 8.0
2.73
2.17
1.78

± 0.025
± 0.12
± 0.36

lmax
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E
 [

M
eV

/n
uc

le
on

]

-6.8

-6.4
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-4.4
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FIG. 1. Dependence of the binding energy on the lmax

cut-off for nmax=25.
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FIG. 2. Dependence of the binding energy on the nmax

cut-off for lmax=11.
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FIG. 3. Comparison of the “experimental” with the calcu-
lated charge density, for the Argonne v8, v14 and v18 poten-
tials, respectively.
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FIG. 4. The p-p two-body density for the Argonne v18

potential: the case when the first proton is located at
x1 = 0.0fm
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FIG. 5. Same as Fig. ?? with the first proton located at
x1 = 1.0fm
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FIG. 6. Same as Fig. ?? with the first proton located at
x1 = 2.0fm
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FIG. 7. The p-n two-body density for the Argonne v18 po-
tential: the case when the proton is located at x1 = 0.0fm
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FIG. 8. Same as Fig. ?? with the proton located at
x1 = 1.0fm
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FIG. 9. Same as Fig. ?? with the proton located at
x1 = 2.0fm
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