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In this document we work out the equations needed to evaluate any operator in the ground state described
by the exp(S) method. We assume the ground state is written as

0) = eap(sT)0) (1)
We define {Ci} the complete set of Ip1h, 2p2h, ...,ApAh excitations. Thus we can write the identity as

1=10>< 0\+ZCI|O >< 0|Cy (2)

The normalized expectation value a of any operator A can be worked out as

o _ {Oleap(S)Acap(ST)[0) _ (0]eap(S)Acap(—S)eap(S)cxp(ST)|0) -
(0[0) (0[0)
Inserting a complete basis we obtain
= (0]exp(S) Acp(~5)10) + 3 (0leap(S) Acap(~S)C] 0 <°%p<s>;g;6§w<8*>'°> 0
n
The expectation value on the right is by definition ¢,. Thus we can define the operator
§T=%" e.cf (5)
With this, the expectation value for any operator can be expressed as
a = (0|exp(S) Acap(—S)(1 + §1)[0) (6)
An alternate way is obtained by inserting the complete set at a different point. We write
o _ Olexp(S)exp(ST)exp(~ST) Acap(sT)[0)
(0/0)
—0lexp(~S1) Acap(shI0) + 3 (0/C, cp(sT) Acap(-8T)0) <0'“p(s’<cﬁfﬁj”(sh'°> ®
=(0/(1 + S)eap(~ST) Acap(sho)
It is obvious that this is just the adjoint expression of equation 4. in particular we get
&, = (Oleap(8)Cleap(~8)(1 + 81)0) ®)

The operators ST can be obtained by solving equation (5) and (8) in an iterative fashion.
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Forms (6) or (7) are equivalent and it depends on the operator as to which form is simpler. If the

operator can be expressed in terms of the operators le the form (7) is preferable, whereas if the operator
is given in terms of C,, the form (6) is preferable.
In lowest order one obtains:
sh=si
Higher order corrections will be worked out below.
Equations determining the S-amplitudes:
The operator S; is given in m-representation independent of m in terms of the spectroscopic amplitudes
S’ph. We calculate the spectroscopic amplitudes as

Sph—<0|[Z2, ]ST|0>
_ <0\[V“" c! ]sﬂo>
€3p3h
— 1 <0‘{ ZQ,HOl ]ST|0>
63p3h
T T
2€3p3h < 0|[ZQ7 (2o, C h}] [Hy0,23](0 >
_ } 1 T tne T
2 < 0l[2e [25,C},]] vt Tjo >

We use the expansion for the evaluation of g;f:

SP1h17P2h2 = O| |0 >

) ;Dlhl pzhz]

[Z,.C
< 0|[ Z2,H01 Cilhl,pth} §I|O > /(€3p3n)

—<ovmi,cl 18110 > Jlespn)
1 -

5 < 00[Z5, [Z2,CL,4, ] [SD10 >

“+....

We approximate gi by:

5’3p3h =< Ol [Z3, Cj}—pfﬂh} ‘0 >
1 -
+5 < 01[Z2, [2, €L, ]|8T10 >
+....

and gi by:

Sapan = < 0|[Za, Cipzm} 0>
T 01|22, 2 cl ]}§T|O>
B ) s Cipan] P2
...

These expectation values need be evaluated and are subject to possibly further truncations. Explicitly we
use:

Terms contributing to S,

Further, we define the density matrix here as:

1 20+1 y y
d(h"’ hm) = +§ 2jn, +1 Z ZP1hmP2h2 Sp1hm7p2h2

p2h2,p1
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and

1 20+1 y) Y
d(pmpm) = +§W Z anhl,mthpmhh:ﬂzM
Pn p2ha,hy

Term C: £ < 0| |:Z2, (Z, Cl1h17P2h2}i|Si|0 >:

Term C,1
1
AS}% hi,pjh; = _§Zplh17iﬂjh2Zpihz‘,mhjsmhhmhz
A A
Aspihivpjh] d(pﬂ’p‘l)ZPz hi,pah;
Term C.2
1
ASpinipih; = 7§Zp1hi,p2h2Zpih3ﬁD]’h_7‘ Spihs,paha
A
ASpih“pjh - _d(h“h?’) pih3,pjh;
Term C,3
1
ASPz hi,pjh; = _§Zplhj,chzZpihi,pjhasp1h37pzh2
A
ASpihivpjh] d(hﬂ’ h3)Zchm;D; hs
Term C4
1
Aspihivpjhj = _§Zp1hlapih2ZP4hi7pjhjSplhlap4h2
A
Aszhz,mh] d(p“p‘*)zmhupjhj
Term C.,5
A N A A
ASpihiapjhj - Zplhhpjhj Zpih'i7p2h2Splh17p2h2
Term C,6
A L NS i hi A\ e ¢ ¢
ASpihiapjhj - Z( ) (2€ + 1){ pi hi L ijhi,mhzzpihjmzmSp1h2,p2h1
4
Term C,7

1 pi h; A
A ipgny, = 3 2 ()UK + 1){ h K}Z vhashit Zoupy e Spipe haha
K

Term B: — < 0|[V*™, Cllhl pth]ShO > /espsn):
Term B,1

A _ S tni,\ tni,\
Aspihupjhj - _Sph (Vh7h1,h2;17,171,172 o Vh,hhhz;P’PmPl)/(ei”h +€pin + €p2h2)



Contributions to S;

AS,, =

Evaluation of one-body density

’ /S/ ’
Zohrhe Spfh 2+ 1

4

2jp +1 (_)(kp+k,,f)

Term 3.a
14
A =1 ;(;)(% ! 1)Zﬁlhl’p2h2 Gplhlsf:;zzh: €ph HhIVA = lpapa) (_2)1:7 (_2)2:
Term 3.e
14
ASph = { Z )20+ 1)Zy, 1y pans eplhlsiﬂel;;zh: €ph Hph|VA=lhaha) (_Q)Z; (\;2)27:1
Term 3.b
14

Term 3.f

ASpn = {Z (20 + 1) (p1h1 |V |hohs) Sphpaa 720

€prhy T €pahy T Eph \/ﬁ \/%
Term 3.c
ASm = { T e+ Subiats gt )

" fplhl + €pohy + €pn P2h2pah T Psp

Term 3.9
ASpp = {Z )(20+1) Spuhs pats 7t (prha |V )}

P 6P1h1 ¥ €paha + En paha,phs \P1101 3

Term 3.d
ASpp = {Z )(2K 4+ 1) Spipahus 7K (prp2|VE |psh) )

p €p1h1 T €pahy + Epn pap,hihs \P1DP2 P3

Term 3.h
Ay = { Y@ 1) ez g}
Ie 4 €pihy + €pahy + €pn TP

Term 1.a



Any one-body operator A can be written in the form

A= Z Aabaiab

ab

We can break this up into four cases:

A= Z AphaTah + Z AhpaZap
ph

=+ E Ahlhzahlahz + E :Aplpz Ay, Ap,

hiho P1P2

Thus the expectation (A) value of A can be written as
= Z AabSab
ab

where
Sup = (afas) = (a]a,)"
Thus we need to compute the three expectation values: Sy, p,, Sp, p,, and Sy n, which we compute according
to
Spips =+ < [Sg,allam] Sl >+ < [Sg,ailapz] g;f >
1

Shihy =+ < aj ap, >+ < [Sg,ailahz} Sl >+ < [S3,azlah2] S;r >
oh =1 < a,J[apSJr >
Here we have made use of the fact that any double commutator with this one-body operator vanishes.
Term: (,OSEL )
Ap(r) =Y (20 + 125 R, (r) Ru(r)
We now discuss the angular momentum coupling for the density operator. Consistent with the definition

of matrix elements we introduce the ‘Ring’-phase in the density. Following Heisenberg and Blok we find
including this phase

Palr) = ()0 [t DD Gy iy oiao) ()

In particular for A = 0 we find

2ja +1 , 20 + 1
(ja+1/2), [2a _(_ (mlﬂ)W
pes(r) = (=) " Ra(r)Ri(r) = () —paalr)

where po 5(r) = Rq(r)Rp(r) is the radial density. To simplify the expressions we leave out the factor \/1/4m
in all the terms.

Term 1: (p)
’I“) = th,h Z 29n + 1 Rh ) (1.&)
h h
p(r) = (=122 4 10 4 ()
h

Term 2: <[ZQ,P]S;L>



1 .
Ap(r> = +pp1,p2 5 Z 26 + plhl p3h35£2h1,p3h3 ppl,pQ (r) (2-7171 + 1) d(p17p2) (20/)
L

Z 2£+ 1 Ze1h1,p3hss£1h27p3h3 - 7ph2,h1 (T) (2jh1 + 1) d(hlahQ) (Qb)
l

L\D\H

Ap(”f‘) = 7ph2,h1

Note: density matrix is not necessarily symmetric. However, since the trace of this density matrix vanishes,
the normalization of p is not changed.

Evaluation of two-body density

In this part we evaluate the contributions to the two-body density in the nuclear ground state. We
assume that in m-representation the operator can be written as

pP(1,72) = pabea abd"re™t =Y " (ac M pldb™") abd " re Tt = Y pac(F1) pay(a) abd et
ab,cd ab,cd ab,cd

All angular momentum coupled quantities are expected to contain the ”Ring”-phase. We couple these
matrix elements identically to the ph-ph matrix element without the exchange term in order to be consistent
with the phase convention. For the angular momentum coupled density we get

((ab)alpM|(ed)n) = D (=)fetmethamma (ke (om iy — my| M) (jemega — malAu) (ablpled)

MagMpMeMy

We can factorize the matrix element as
<a6|p|CJ> = (Ra(rl)Rb(rl))/le (721)<.]aa ma‘}/l,nLmeb)) (RC(TZ)Rd(TQ))/l,m (722)<.jda md|}/lfm|jcmc>)

Writing the matrix elements as reduced matrix elements

((ab)A|p™|(cd)x) Z((—)k“Ra(ﬁ)Rb(Tl)\/ﬁ<ja\|YAqub>YA*#(f1))

() Relra) Ra(r2) s (VA 0) Vo)

For convenience we define the one-body multipole density as
15 k 1, .
ipab(r) =(=) “Ra(T)Rb(T)K<Ja||YAnHJb>
= (MG /2 = 12000 Ra(r) R(r)

if £, 4+ £, + X is even. This density is zero otherwise.

For a spherically symmetric (spin=0) nucleus it is more relevant to calculate p(r1, r2, 612) which we will
express in angular momentum coupling. In spherical nuclei this matrix element will always occur as a sum
over u so that we can write

1 . i .
pab cd(r1,72,612) = Zpab cd(T1,72) = péb(Tl)pé\d(W) A+ 1 ZY,\M(Tl)YAu(TZ)
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with
Pav.ca(r1,72,012) = poy (1) g (12) Pa(cos612)

Expectation values:
The expectation value of this operator can be written in the following series of expectation values in the
bare ground state in which we number the terms consecutively:

+<p>+<pg1>+<ps;r>

+ < [S2,p] >

+ < [S2,p] 8] > + < [S2.0] 8] >+ < [S2,0] 8 > + < [84,9] §] >

+ < [S3,p] S > + < [S5.0] 8] > + < [S5.0] 8 > + < [S5,9] ] >
1 1

+5 < [Sg, [Sg,p]] S +5 < [Sg, [Sg,p]] S1 > +% < [Sg, [Sg,p]] s

We can simplify these terms using the symmetries for adjoint operators as stated in the write-up. Thus we
can restrict the density operator as

P = Pac(1)pan(2) [alzha]::had:hac:h + a]::pa;[:pad:pac:p
+ai:ha;r:pad=pac:h + alzpa;r:had:haczp
+2a1:ha;[:had=paczh + QaIZPaI:hadzpaC=h
+231=hazzhad:hac:p + ZaI:ha;r:had:pac:p
+2ai:ha;[:pad=pac’=p + 2aI:pa1‘:had=pac=p:|

Using these symmetries we find that we can write the same series as

+<p>+<[Sap] §l >+ < [S3,p) é;f >+% < [Sg, [Sz,pﬂ éj[ >
+< 58] >+ < [S5.5] 8] > + < [S5,5] 8] >
+ <8l >

where p is the symmetrized density:

p= Z(pacu)pdb(z) + Pac(2)de(1))aIa;radac

Contributions from bare hf-ground state:
Term 1a

Phihi,hoho

In angular momentum coupling, sum over m’s:

p(ri,re,b12) = > (=) FtFna)gy pb o (11) s Phyn, (r2) Po(costhz)
hi,h2

= 2n, + DR3, (1) (2, + 1R}, (r2)
h1h2

This term has the structure pp(1) * ppr(2). Here ppy is the bare hartree-fock one-body density. We can
include all higher order one-body density terms by adding

Ap(r1,72,612) = Ap(r1)prg(r2) + pry(ri)Ap(ra)
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where Ap is the difference between the full one-body density minus the bare hartree-fock one-body density.
In turn, in higher order terms we have to exclude those terms where in the operator pgp.q a connects with
c or b connects with d. However, we still have to consider the exchange terms where a connects with d and
b connects with ¢ (see e.g. terms 8g-8j).

Term 1b
“Phihz,hihs
In angular momentum coupling, sum over m’s:
Ap(rlar27012 Z th1h2 rl)ph1h2(r2)P€(608912)
hiha £

(No contribution in pn or np densities)

Contributions linear in Z or S:

For all following terms we imply a summation over all orbits appearing twice in any expression.
Term 2

In angular momentum coupling, sum over m’s (factor 2 is due to symmetry , see above):

Ap(rl’ T2, 012) = Z Slg\lh17;l72h2 |:p21171 (Tl)p}i\zhz (T2) + pl);lhl (Tl)p});ng (TQ)} P)\(Cosem)
A

Contributions quadratic in Z or S:

Term 8Sa
1
§Zp1p2h1 ha Spsmhlhz Ppips (Tl)pmpz (TQ)

In angular momentum coupling, sum over m’s and all exchanges:

1 p1 ps Y
Ap(7’177"27912) = g Z(_)K+1(2K + 1){1)411 pz }S£p4,}L1}L22£p2”L1}L2
K.l
p2pa (T1) Py (12) + Py, (1) Pl (72) | Pr(c05612)
pP2P4 1 pP3P1 2 pplps 1 pp4p2 2 ¢ 12
1 pe L\ oK K
Jrg Z 2K +1 {p3 py K }Spsp4yh1h2ZP1P2,h1h2
K.l

)

(b9 (11 (r2) F P, (1)} (r2) | Pr(costhro)

Term 8b
1
§ZP1P2h1h2SP1p2h3h4ph3h1 (T1>ph2h4 (TQ)
In angular momentum coupling, sum over m’s:
1 hi hs ¢
Ap(ri,ra,012) = 3 D () eRK + 1){ hy hy K }Sﬁpzahsingpmhlfw

K0

[Pt (P Phy s, (72) iy (1)l (r2) | Pe(costnz)

h1 h4 l K K
g (_)I(QK + 1){ hs hy K }SP1P2,h3h4ZP1P2,h1h2

[ty (11)Phan (72) + Pl (71) Pl (r2)] Pe(cosn2)

Term 8d
Zplpzhlhz Sp3p2}L3h2pP1h1 (Tl)ppahs (T2)
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In angular momentum coupling, sum over m’s:

74 14 4 4
Ap(ri,ra,012) = ZP1h17P2h2 Spahs,pzthmm (Tl)pp3h3 (r2) Pe(costhz)
Term 8e
Zplpzhl ha Sp3p2h3h2 Phsps (7‘1 )phlpl (TQ)

In angular momentum coupling, sum over m’s:

Ap(Tl’ T2, 612) = le;lhl,P2h2 Sll;sh&l)zhz pfbgps (Tl)pfnpl (TQ)P@(COSQH)
Term 8c

_Zplpz hihz Spapz hsha Pp1ps (7“1 )phl hs (TQ)

In angular momentum coupling, sum over m’s:

14
o2 012) = Zhy 1, s Sha pans ()R A DL ol (r0)0f 1, (r2) Pe(costg)

Term 8f
_Zplpzhlhzspzpzhzthh?,hl (rl)pPBPI (TQ)
In angular momentum coupling, sum over m’s:

Y4
B2 012) = Zhy s s Shs pans ()R A DL ol (1) php, (r2) Pe(costs)

Terms 8g-8j
Ap(ri,7a,012) = — d(p1,p3) Z o, (1) P, (T2) Pe(cosby2)
¢

—d(p1,p3) > posn, (11)Ph,n, (r2) Pe(costra)
0

+d(h1,h3) D Pl (1) Phgny (r2) Pe(cosbra)
¢

+d(h1,h3) Y Phony (M) Pl (r2) Pe(cosbin)
14

Here we left out terms implicitly included by the corrections in term (1)
Contributions from third order terms:
Term Ga

Ap(r1,72,012) = 2 Spnlpnp(11)phon, (r2) + ppn(r2) phn, (11)]

This term is included through term 1, see note.
Term 60

Ap(r1,72,012) = —Spn {Pisp(rl)f)ﬁsh(@) + P, (1) pon, (r2)+
0, (110, (r2) + ph (110 (r2) | Pe(costra)

Term 9: Contributions from < [Sz,ﬁ} S;F >
Term Ya

Ap(r1,72,012) = —(Pahy |V |pspe)einv(pa, ps,w = €p.hy + €py)

(Ppape (1) Ppany (2) + Phopa (1) ppepa (r2)) Pe(costi2)
Term 9b - -
Ap(ri,ra,012) = —(pdhb|V£|hah3>einv(hc, hs,w = €p.hy + €py)

(Phon. (1) Py (12) + Prypa (1) Phon, (12)) Pr(costia)

9



Term 9c

Ap(r1,72,012) = d(he, P5,w = €puny + €ny)Spahapans (Phahe (71)Ppany (72) + Phypa (1) Phon, (r2)) Pe(cosths)
Term 9d

Ap(Tla T2, ‘912) = d(pa, hs,w = €p,n, + €pc>§pch3,pdhb (ppapc <T1>ppdhb (T2) + Phypa (Tl)ppupa (r2))P€ (003912)
where we used the definitions

4 Ql
_ 2041 Z ah1,p2h25P5h17P2h2
QjPa +1 €pohy T €hy T W

einv(pav Ps, w)

4 ol
_ 20+1 Zplhc»p2h2 Sp1h37p2h2
2jhc +1 €pohy T €py T W

einv(he, hs,w)

2+ Z£1h07p2h2 (p2ha|V*|psp1)
th(: +1 €pahy T €p; T W

2+ ZL by (P22 |V |h1h3)
2jp, +1 €pshy T €ny T W

d(hmpfnw) =

d(pav h37 w) =

The dominant contribution from S, is <{Z2, [Z,, pH Z;r ZJ ) giving rise to
Term 10
which is obtained making the replacements in term 8a and term 8b

1 1
K K YA K YA K
ZP1P2,h1h2 - Zplpg,h1h2 - §d (pl’pf’)Zpstnhz - §d (pz’p5)Zp1P5>h1h2

1 1
K K YA K A K
SP3P4,h1h2 - SP3P4,h1h2 - §d (p3’p5)sp5p4,h1h2 - §d (p4’p5)Sp3P5,h1h2
1 1
K K 77 K A K
Zplpz,h1h2 - Zplpz,hth - §d (hl’ h5)ZP1p2~,h5h2 - §d (h2’ h5)Zp1:D2,h1h5
1 1
K K 77 K Z7 K
SP1P2>h3h4 - Splpz,hsfu - §d (h3’ h5)Sp1p2,h5h4 - id <h47 hS)Splpz,hshs
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