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I.

At the S2-level the computations are simple and fast. The basic equation to be solved is given in our paper in
operator form as

0 = 〈0|
{
V02 +

[
S2,V00

]
+

[
S2, (H0 + U0)

]
+

[
S3,V10

]
+

[
S4,V20

]
+

1
2

[
S2,

[
S2,V20

]]}
|2p2h〉 .

At the S2-level we set S3 = S4 = 0. Then, taking the matrix elements yields:

〈p1p2|Z|h1h2〉 =
−1

ep1 + ep2 − eh1 − eh2

{
〈p1p2|V |h1h2〉

+
∑

p3≤p4

〈p3p4|Z|h1h2〉〈p3p4|V |p1p2〉+
∑

h3≤h4

〈h3h4|V |h1h2〉〈p1p2|Z|h3h4〉

+
∑
p3,h3

〈p3h̄3|V |p1h̄1〉〈p3h̄3|Z|h2p̄2〉+
∑
p3,h3

〈p3h̄3|V |p2h̄2〉〈p3h̄3|Z|h1p̄1〉

−
∑
p3,h3

〈p3h̄3|V |p1h̄2〉〈p3h̄3|Z|h1p̄2〉 −
∑
p3,h3

〈p3h̄3|V |p2h̄1〉〈p3h̄3|Z|h2p̄1〉

+
∑

p3≤p4

∑
h3≤h4

〈p3p4|Z|h1h2〉〈p1p2|Z|h3h4〉〈p3p4|V |h3h4〉

+
∑
p3,h3

∑
p4,h4

〈p3h̄3|Z|h1p̄1〉〈p4h̄4|Z|h2p̄2〉〈p4h̄4|V |h3p̄3〉

−
∑
p3,h3

∑
p4,h4

〈p3h̄3|Z|h2p̄1〉〈p4h̄4|Z|h1p̄2〉〈p4h̄4|V |h3p̄3〉
}

.

The mean field equation in m-representation takes the form:

〈h1|Hsp|h2〉 = eh1δh1,h2 = 〈h1|H1|h2〉+
1
2

∑
p1,p2,h3

〈p1p2|Z|h1h3〉〈p1p2|V |h2h3〉

〈p1|Hsp|p2〉 = ep1δp1,p2 = 〈p1|H1|p2〉 −
1
2

∑
h1,h2,p3

〈p1p3|Z|h1h2〉〈p2p3|V |h1h2〉

〈p1|Hsp|h1〉 = 0 = 〈p1|H1|h1〉+
1
2

∑
p2,p3,h3

〈p2p3|Z|h1h3〉〈p2p3|V |p1h3〉 −
1
2

∑
h2,p3,h3

〈p3p1|Z|h2h3〉〈h2h3|V |p3h1〉

+
∑
p2,h2

〈p1p2|Z|h1h2〉〈p2|H1|h2〉 .

Here the one-body part of the hamiltonian is called:

〈h1|H1|h2〉 = 〈h1|T |h2〉+
∑

h

〈h1h̄2|V |hh̄〉 .

We compute the correlations in angular-momentum coupling. This can be performed either in particle-particle(pp)
coupling or in particle-hole(ph) coupling. Either way, some re-coupling is required since those terms indicated in
ph-notation require ph-coupling whereas the other terms require pp-coupling. The particle energies are given as the
diagonal terms of the effective single-particle hamiltonian:

ei = 〈i|V sp|i〉 .
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We also define the always positive ”quasi-particle”-energies:

εp(h) =
{

ep for particles
−eh for holes

This procedure essentially provides a G-matrix calculation inside a finite nucleus.
We compute the amplitudes Z in ph-coupling as:

〈p1h̄1|Zλ|h2p̄2〉 =
−1

ep1 + ep2 − eh1 − eh2

{
〈p1h̄1|V λ|h2p̄2〉+ 〈p1h̄1|V λ,corr|h2p̄2〉

}
.

The correction has three contributions: (c1,c2,c3)

〈p1h̄1|V λ,c1|h2p̄2〉 =
∑
p3h3

〈p1h̄1|Zλ|h3p̄3〉〈h3p̄3|V λ|h2p̄2〉

+
∑
p3h3

〈p2h̄2|Zλ|h3p̄3〉〈h3p̄3|V λ|h1p̄1〉

+
∑

p3h3,p4h4

〈p1h̄1|Zλ|h3p̄3〉〈h3p̄3|V λ|p4h̄4〉〈p2h̄2|Zλ|h4p̄4〉

and

〈p1h̄1|V λ,c2|h2p̄2〉 =
∑

`

(2` + 1)
{

p1 h1 `
h2 p2 λ

}
〈p1h̄2|V `,c2|h1p̄2〉

with

〈p1h̄2|V `,c2|h1p̄2〉 =
∑
p3h3

〈p1h̄2|Z`|h3p̄3〉〈h3p̄3|V `|h1p̄2〉

+
∑
p3h3

〈p2h̄1|Z`|h3p̄3〉〈h3p̄3|V `|h2p̄1〉

+
∑

p3h3,p4h4

〈p1h̄2|Z`|h3p̄3〉〈h3p̄3|V `|p4h̄4〉〈p2h̄1|Z`|h4p̄4〉

Finally:

〈p1h̄1|V λ,c3|h2p̄2〉 =
∑
K

(−)K+1(2K + 1)
{

p1 p2 K
p1 h1 λ

}
〈p1p2|V K,c3|h1h2〉

with

〈p1p2|V K,c3|h1h2〉 =
∑

p3≤p4

1
1 + δp3,p4

〈p3p4|V K |p1p2〉〈p3p4|ZK |h1h2〉

+
∑

h3≤h4

1
1 + δh3,h4

〈h3h4|V K |h1h2〉〈p1p2|ZK |h3h4〉

+
∑

h3≤h4,p3≤p4

1
1 + δh3,h4

1
1 + δp3,p4

〈p3p4|ZK |h1h2〉〈p3p4|V K |h3h4〉〈p1p2|ZK |h1h2〉

The single particle energies can be computed in p-p-coupling as:

ep,p′ = 〈p|T |p′〉+
∑
K,h

(2K + 1)
(2jp + 1)

〈p h|V K |p′ h〉

+
∑

K,p2,h2≤h3

(2K + 1)
(2jp + 1)

〈pp2|ZK |h2h3〉〈p′p2|V K |h2h3〉
1

1 + δh2,h3

and
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eh,h′ = 〈h|T |h′〉+
∑
K,h3

(2K + 1)
(2jh + 1)

〈h h3|V K |h′ h3〉

−
∑

K,p2≤p3,h2

(2K + 1)
(2jh + 1)

〈p2p3|ZK |hh2〉〈p2p3|V K |h′h2〉
1

1 + δp2,p3

In our programs they are computed in p-h-coupling. These numbers have been checked against the expression given
here.

The binding energy is computed as:

〈H〉 = 〈0|HS(1 + S̃†)|0〉

where

HS = eSHe−S

If the CCE has been solved without any truncations, i.e. satisfying the generating equations for all Sn, then the
binding energy is exactly given by

〈H〉 = 〈0|HS|0〉

If we now truncate and use only S2, we obtain

〈H〉 = 〈0|H|0〉+ 〈0|S2H|0〉

It has been customary to quote this value as the result of the S2-calculation. Thus we use the expression

Eb =
∑

h

(2jh + 1)〈h|T |h〉+
1
2

∑
K,h1,h2

(2K + 1)〈h1 h2|V K |h1 h2〉

+
1
2

∑
K,p2≤p3

∑
h1,h2

(2K + 1)〈p2p3|ZK |h1h2〉〈p2p3|V K |h1h2〉
1

1 + δp2,p3

This value is not necessarily an upper bound to the binding energy. If, however, we treat this as a variational
problem, such expectation value, if computed without approximations, must give an upper bound independent of
truncations in Sn. In that case we must compute the expectation value precisely, in particular we must include
contributions from S̃n with n ≥ 3. While S2 has been adjusted such that 〈HS S̃2〉 = 0 this is not the case for all
other S̃n. In a reasonable approximation we can compute

〈H〉 = 〈0|HS|0〉+ 〈0|HSS̃
†
4)|0〉

We can approximate

S4
† =

1
2
S2

†S2
†

This allows us to approximate

〈H〉 = 〈0|H|0〉+ 〈0|S2H|0〉+
1
2
〈0|S2HS2

†S2
†|0〉

The binding energies quoted here have not been obtained using the variational approach. Thus, the values given here
are not upper bounds to the true binding energy, even leaving open the possibility that the S4-level results give less
binding than the S3-level results.

Our calculations are influenced by three parameters as our wave functions are expanded into harmonic oscillator
functions: the HO-length parameter bho, the maximum nmax, and the maximum `max of our basis. To examine the
convergence according to all parameters we have made a series of tests. Table I shows the dependence of the result
on the length parameter chosen. These calculations were done for 4He using the Argonne V-8’ potential without the
Coulomb interaction. All calculations in Table I were done with an `max = 18
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Table I

Binding energy (Kinetic energy) in MeV

bho nmax = 25 nmax = 30

0.6[fm] -16.94(41.45) -16.97(41.33)

0.7[fm] -16.99(41.24) -16.96(41.30)

0.8[fm] -17.01(41.15) -16.97(41.29)

0.9[fm] -16.99(41.16) -17.01(41.14)

1.0[fm] -16.98(41.09) -17.00(41.14)

1.1[fm] -16.96(41.01) -17.00(41.03)

Table II shows similar results for 12C and 16O this time using the Argonne V8’ potential including the Coulomb
interaction. These were done with fixed nmax = 30 and `max = 18.

Table II

Binding energy (Kinetic energy) in MeV

bho
12C 16O

0.6[fm] -24.12(161.45)

0.7[fm] -25.18(157.05) -55.49(226.38)

0.8[fm] -25.43(155.80) -55.98(224.25)

0.9[fm] -25.51(155.35) -55.77(225.05)

1.0[fm] -25.54(155.02) -55.99(223.82)

1.1[fm] -25.54(154.64) -55.92(223.70)

1.2[fm] -25.52(154.20) -55.56(224.52)

We expect that as the length parameter gets too small, the Harmonic Oscillator expansion can no longer reproduce
the long range tails of the wave functions leading to reduced binding. On the other hand, if the length parameter
gets too large, the finite basis can no longer provide the high Fourier components in the correlations, again leading
to reduced binding.

Table III shows computations to test the convergence with respect to `max, using the Argonne V-18 interaction.
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Table III

Binding energy in MeV

n,` 16O 12C 4He

n=25,` = 12 -50.482 -22.769 -16.102

n=25,` = 14 -54.972 -25.137

n=25,` = 16 -57.241 -26.391 -16.381

n=25,` = 18 -57.285 -26.588 -16.392

The results shown in these three tables indicate that our calculations i are converged with respect to the choice
of all three parameters. In fact the results are quite stable even for a substantial increase in the length parameter.
This gives us confidence that these computations can be extended to larger nuclei such as 40Ca or even heavier nuclei
within the basis used here.

II. S3-LEVEL CORRECTIONS

The S2-level calculations are considerably under-bound when compared to the GFMC calculations. This is not a
surprise; and we have to examine the S3-level corrections as the next most important contributions. Similar to our
paper we make here a perturbation expansion for the corrections in the S2-equation, still assuming that S4 = 0 and
S5 = 0:

S3H10 ≈
−1

ε3p3h

{
[S2,H01] +

1
2
[
S2, [S2,H10]

]
+ [S3,H00] +

[
S3, [S2,H20]

]}
H10

In first order perturbation we leave out the two terms containing S3 on the right hand side. The second order
correction is obtained by replacing the S3 on the right hand side by the expression above and again leaving out all
S3 terms on the right hand side. This can be done to all orders in an iterative procedure.

We will first focus on the first-order corrections. Our calculations so far have shown that there are three significant
terms. Of these, the most important correction arises from an effective quasi-particle energy. We give those in angular
momentum coupling:

ε(p, p′) = −1
2

∑
`,p3,p4,h3

2` + 1
2jp + 1

〈pp̄4|V `|p3h̄3〉〈p′p̄4|V `|p3h̄3〉
εp3h3 + εp4 + ω

−1
2

∑
`,p3,p4,h3

∑
p5,h5

2` + 1
2jp + 1

〈pp̄4|V `|p3h̄3〉〈p3h̄3|Z`h5p̄5〉〈p′p̄4|V `|h5p̄5〉
εp3h3 + εp4 + ω

−
∑
K

and

ε(h, h′) = −1
2

∑
`,p3,h4,h3

2` + 1
2jp + 1

〈h4h̄|V `|p3h̄3〉〈h4h̄
′|V `|p3h̄3〉

εp3h3 + εh4 + ω

−1
2

∑
`,p3,h4,h3

∑
p5,h5

2` + 1
2jp + 1

〈h4h̄|V `|p3h̄3〉〈p3h̄3|Z`|h5p̄5〉〈h4h̄
′|V `|h5p̄5〉

εp3h3 + εh4 + ω

−
∑
K

Here ω is the sum of the other three single particle energies not appearing in this equation. These terms are well
known and important contributions to the single particle energies which we name QPE.
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It should be pointed out that the quasi-particle energies appearing in the denominator do not contain the correction
itself. To treat the quasi-particle energies in a self-consistent way enters only when we also include all higher clusters
Sn with n ≥ 4.

The boost in binding due to this quasi-particle energy correction is demonstrated in the second line of table IV.
However, we find this correction to be huge and leading to complete over-binding particularly in 4He as well as to
rather unstable results. The reason is the bare interaction in the two-particle state. We re-normalize this interaction
by including S3 of equation (2.1) on the right hand side and iterating this equation to convergence. This results
in a much more reasonable correction which we call Re-normalized Quasi-Particle Energy(RQPE). The effect on
the binding energy is shown in line 4 of table IV. Iterating this equation to all orders does not take us out of the
S3-framework.

The other two significant contributions are called ”f3b” and ”f3c” for historical reasons. For these corrections
we give only the leading term here, the others can be worked out in a similar fashion. These terms require some
re-coupling and thus their calculation is more time-consuming.

The f3b-correction is given in our catalog of terms by the equations (121)→(124) and (132)→(133). The f3c-
corrections are listed in our catalog (160)→(164) and (169)→(172). In both cases we have to include all the exchanges.
In most cases these two terms have an opposite effect and somewhat cancel each other so that the most important
correction remains the quasi-particle energy correction. in table IV the columns three and four indicate the effect of
these terms on the binding energy.

The S3 correlations also affect the mean field.

Table IV

Binding energy in MeV

4He 12C 16O

S2 -17.01 -25.54 -57.51

S2+QPE -55.63 -87.72

S2+RQPE -29. -61.61 -110.35

S2+RQPE+f3b

S2+RQPE+f3b+f3c -26.56

full S3 -26.21 -51.87 -92.21

GFMC -25.93 -80.0

Here again, the calculations for 4He were made with the Argonne-V8’ interaction without the Coulomb part (bho =
0.9 fm), whereas the 12C and 16O calculations were made with the V8’ interaction (bho = 1.0 fm).

III. S4-LEVEL CORRECTIONS

Since we found that the main mechanism of increasing the binding from S3-clusters is by changing the single particle
energies, we make the approximation that also for S4-clusters the main effect is via single particle energies. Thus we
have focussed on getting those contributions that modify the single particle energies as complete as possible. We have
also included those contractions that can be added to individual matrix elements in the S2 and S3 contributions.

The contributions to the hole energies from term (VI) and (IX) are computed according to:

∆ε(p1, p6, ω) = ∆e(p1, p6, ω) = +d(p5, p4, ω)〈p5p̄4|V |p6p̄1〉
−d(h6, h3, ω)〈h6h̄3|V |p1p̄6〉
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This term together with the equivalent term for hole orbits correct the single-particle potential for fractional occupation
of the natural orbits.

These are somewhat compensated by

∆ε(p1, p6, ω) = ∆e(p1, p6, ω) = +d(p5, p4, ω)〈p5p1|V |h3h4〉〈h3h4|Z|p4p6〉
+d(h6, h3, ω)〈p1h̄6|V |h4p̄4〉〈h4p̄4|Z|p6h̄3〉

In addition we have the terms

∆ε(p1, p6, ω) = ∆e(p1, p6, ω) = +〈p1h̄6|Z|h3p̄3〉
〈p3h̄3|V |h4p̄4〉

εp3h3 + εp4h4 + ω
〈p4h̄4|V |p5h̄6〉

+〈p1p5|Z|h3h4〉
〈p3p4|V |h3h4〉

εp3h3 + εp4h4 + ω
〈p3p4|V |p5p6〉

For hole states we have similar terms, but we need to include the extra negative sign for the QPE.

∆ε(h1, h5, ω) = −∆e(h1, h5, ω) = −d(p5, p4, ω)〈p5p̄4|V |h5h̄1〉
+d(h6, h3, ω)〈h6h̄3|V |h1h̄5〉

These are compensated by

∆ε(h1, h5, ω) = −∆e(h1, h5, ω) = +d(p5, p4, ω)〈p5h̄5|V |h6p̄6〉〈h6p̄6|Z|p4h̄1〉
+d(h6, h3, ω)〈h6h5|V |p6p5〉〈p6p5|Z|h3h1〉

In addition we have the terms

∆ε(h1, h5, ω) = −∆e(h1, h5, ω) = +〈p5h̄1|Z|h3p̄3〉
〈h3p̄3|V |p4h̄4〉

εp3h3 + εp4h4 + ω
〈p4h̄4|V |p5h̄5〉

+〈h1h6|Z|p3p4〉
〈p3p4|V |h3h4〉

εp3h3 + εp4h4 + ω
〈h3h4|V |h5h6〉

Our calculations using the Argonne V8’ interaction appear to give reliable results, whereas our calculations using
Argonne-V18 seem to have still some problems. In order to not confuse the issue of interaction and coupled cluster
approximation, we have made the comparison to GFMC with the Argonne-V8’ interaction. The Kamada-test case
was made using the V8’ interaction without the Coulomb interaction. We have included our result for that case as
well in table V, labelled ”He-4-Kam”.

Table V

Comparison of CCE-results with GFMC
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Binding energy in MeV

Nucleus S2-level S3-level S4-level GFMC

4He-Kam -17.01 -26.21 -26.17 -25.93

4He(V-8’) -16.39 -25.48 -25.27 -25.14

6n(V-8’) -31.35 -32.02 -31.99

8n(V-8’) -39.35 -39.17 -39.73

8He(V-8’) -17.71 (-19.3*) -23.7

12C(V-8’) -25.54 -51.87 -55.42 -80.00

14C(V-8’) -40.70 -69.64 (-78.24 *)

14O(V-8’) -35.54 -63.28 (-68.8 *)

16O(V-8’) -57.51 -92.21 -100.7

22O(V-8’) -59.23 (-103.7*)

28Si(V-8’) -66.8 (-134.2 *)

30S(V-8’) -70.3

32S(V-8’) -105.54 (-243.25 *)

40Ca(V-8’) -289.4 (-354.21 *)

Note: ( ∗) implies that computation has not yet fully converged.

IV. CONCLUSIONS

The systematic studies show convergence in the three parameters that affect the calculation namely nmax, `max,
and the length parameter bho.

The comparison of the final results up to S4 with the GFMC results find reasonable agreement for the three lightest
systems: 4He, 6n, and 8n. However, quite disconcerting are the discrepancies found in 8He and 12C. In 8He the
calculations miss by 4.8 MeV and in 12C it misses by 25 MeV. However, for 16O the computed binding is quite
reasonable again. The situation that this problem does not show in the 6n comparison seems to indicate that the
problem is in the p-n channel of the interaction. Also, since it is a huge discrepancy it is likely to be in the tensor
interaction.
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