Understanding The Structure of Nucleons

Elena Long

Physics Seminar

Juniata College

September 12th, 2014

09/12/2014

Juniata Physics Seminar

Today's Discussion

- The Structure of Matter A Brief Overview
- Electron Scattering Experiments
- Nucleon Structure:
 - Electromagnetic Form Factors
 - Structure Functions
 - The Future through Tensor Polarization

The Structure of Matter

A sense of scale: <u>http://htwins.net/scale</u>

09/12/2014

Electron Scattering at Jefferson Lab

- Fixed target electron accelerator
- Almost completed 12 GeV upgrade
- World leader in polarized beam and polarized targets
- Mission includes: "To deliver discovery-caliber research by exploring the atomic nucleus and its fundamental constituents, including precise tests of their interactions"

09/12/2014

Juniata Physics Seminar

Electron Scattering – Measuring Structure

Scattering electrons from nuclei (consisting of protons and neutrons)

We measure the cross section, which can be thought of as normalized counts ($N = \mathcal{L}t\sigma$)

Electromagnetic Form Factors

Scatter electrons from a proton or a neutron

Proton Form Factors

- Free proton targets available ¹H
- Protons are charged, so normal spectrometers can isolate them
- Counting number of particles detected gives the cross section
- Since two unknowns (G_E^p and G_M^p), take two measurements to solve for them
- Relatively easy measurements

09/12/2014

Juniata Physics Seminar

е

09/12/2014

Juniata Physics Seminar

Elena Long <ellie@jlab.org>

9

09/12/2014

Juniata Physics Seminar

Neutron Form Factors

Electric form factor is much smaller

No free neutron target is available

• Requires small-nuclei targets, such as ²H or ³He

Neutrons, being neutral, cannot be directly detected using standard spectrometers

09/12/2014

Juniata Physics Seminar

Neutron Form Factor, G_E^n Measurement

Polarized ³He Target

- Optically pumped Rb and K vapor used to polarized ³He via spin exchange (SEOP)
- NMR and EPR used to measure P_t
- N present in cell to absorb photons from spin-exchange

 $5.3 \pm 0.8\%$ at $Q^2 = 0.1$ $D_N = 2.4 \pm 0.3\%$ at $Q^2 = 0.5$ $2.8 \pm 1.2\%$ at $Q^2 = 1.0$

- Achieved P_t of 51.4 \pm 0.4 \pm 2.8 %
- Details in Y. Zhang, Ph.D. Thesis, Rutgers, 2013

09/12/2014

Neutron Form Factor, G_E^n Measurement

Right HRS

09/12/2014

- Detected scattered electrons from ³He(*e,e'n*) and ³He(*e,e'*)
- Detector package included VDCs, trigger scintillators, gas Cherenkov, and leadglass calorimeters

09/12/2014

09/12/2014

09/12/2014

09/12/2014

Juniata Physics Seminar

Elena Long <ellie@jlab.org>

18

09/12/2014

q

Juniata Physics Seminar

09/12/2014

Juniata Physics Seminar

Elena Long <ellie@jlab.org>

e

20

Structure Functions - Unpolarized

Higher $Q^2 \rightarrow$ Better Resolution If no change with Q^2 , no substructure

09/12/2014

Juniata Physics Seminar

Structure functions describe deviations from point-like structure

$$\sigma = \sigma_{\text{Mott}} \left[\frac{2}{Mc^2} F_1(x, Q^2) \tan^2 \frac{\theta}{2} + \frac{1}{\nu} F_2(x, Q^2) \right]$$

From F_1 and F_2 we learned that

- Nucleons are made up of three valence point-like particles
- These three particles are spin-1/2
- These particles interact with a "quark sea"

* From F_1 and F_2 , we know they're in there, but not where they are

Structure functions describe deviations from point-like structure

$$\sigma = \sigma_{\text{Mott}} \left[\frac{2}{Mc^2} F_1(x, Q^2) \tan^2 \frac{\theta}{2} + \frac{1}{\nu} F_2(x, Q^2) \right]$$

$$\sigma = \frac{\alpha^2 E'}{Q^4 E} L_{\mu\nu} W^{\mu\nu}$$

$$W^{\mu\nu} = -\alpha F_1 + \beta F_2$$

$$+ i\gamma g_1 + i\delta g_2$$

Scattering on Unpolarized Nucleons

Scattering on Polarized Nucleons (spin up or down)

09/12/2014

Juniata Physics Seminar

09/12/2014

Juniata Physics Seminar

Using a polarized target, we can gain access to more information

09/12/2014

Juniata Physics Seminar

e

- $\,\circ\,$ No simple interpretation for g_2
- High $Q^2 \rightarrow$ Test of lattice QCD
- High $Q^2 \rightarrow$ Test of χ PT
- Can provide information on polarizability, which might be causing the proton radius problem

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$
$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{dy}{y} g_1(x,Q^2) \qquad \bar{g}_2(x,Q^2) = \int_x^1 \frac{dy}{y} g_1(x,Q^2) = \int_x^1 \frac{dy}{y} g_1$$

- Leading twist-2 term
- \circ Entirely dependent on g_1

 $\bar{q}_2(x,Q^2) = \int_x^1 \frac{\partial}{\partial y} \Big[\frac{m_q}{M} h_T(y,Q^2) + \zeta(y,Q^2) \Big] \frac{dy}{y}$

• $h_T \rightarrow$ Quark transverse polarization distribution

• $\zeta \rightarrow$ Quark-gluon interactions

Juniata Physics Seminar

09/12/2014

Juniata Physics Seminar

Elena Long <ellie@jlab.org>

e

The Tensor Polarized Future of Nucleon Structure

09/12/2014

Juniata Physics Seminar

For tensor polarization, need spin-1 particles Spin-1 System Spin-¹/₂ *m* = +1 System $m = +\frac{1}{2}$ *m* = 0 $m = -\frac{1}{2}$ *m* = -1 Vector $P_z = p_+ - p_-$ Pzz = +1.00

Protons and neutrons are spin- $\frac{1}{2}$ particles, but a system of two gives a $\frac{1}{2} + \frac{1}{2} =$ spin-1 system

We can tensor polarize deuterons, which are made up of one neutron and one proton

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

Structure functions describe deviations from point-like structure

$$\sigma = \sigma_{\text{Mott}} \left[\frac{2}{Mc^2} F_1(x, Q^2) \tan^2 \frac{\theta}{2} + \frac{1}{\nu} F_2(x, Q^2) \right]$$
$$W_{\mu\nu} = -\alpha F_1 + \beta F_2$$
$$+i\gamma g_1 + i\delta g_2$$
$$-\varepsilon b_1 + \zeta b_2 + \eta b_3 + \kappa b_4$$

Scattering on Unpolarized Targets

Scattering on Vector Polarized Targets (spin up or down) Scattering on Tensor-Polarized Targets (spin 0)

 $b_1 \rightarrow$ Leading twist

$$b_1(x) = \frac{q^0(x) - q^1(x)}{2}$$

*q*⁰: Probability to scatter from a **quark** (any flavor) carrying momentum fraction *x* while the <u>deuteron</u> is in state m=0

 q^1 : Probability to scatter from a **quark** (any flavor) carrying momentum fraction x while the <u>deuteron</u> is in state |m|=1

DIS, so measuring quark structure but requires the nucleus to be in a certain state!

Looks at nuclear effects at the resolution of quarks!

09/12/2014

Juniata Physics Seminar Elena Long <ellie@jlab.org>

If there are no nuclear effects, then b_1 vanishes.

Even with D-state admixture, b_1 is expected to be tiny

Khan & Hoodbhoy, PRC 44 ,1219 (1991) (Relativistic convolution model with binding) $b_1 \approx O(10^{-4})$

Umnikov, PLB 391, 177 (1997) (Relativistic convolution with Bethe-Salpeter formalism) $b_1 \approx O(10^{-3})$

All conventional **models predict small or vanishing values of b₁** in contrast with the HERMES data

Any measurement of a $b_1 < 0$ indicates exotic physics

Measured by ratio method

Using Hall C SHMS Slow Faraday Raster Lumi Cup Unpolarized Beam Fast Polarized Raster Target HINIS e' Detector е E W

09/12/2014

Juniata Physics Seminar

Dynamic Nuclear
Polarization of ND₃

 $\circ P_{zz} \sim 30\%$

- 5 Tesla at 1 K
- 3cm Target Length

• $p_f \sim 0.65$

• $f_{dil} \sim 0.27$

09/12/2014

Juniata Physics Seminar

Elena Long <ellie@jlab.org>

REFRIGERATOR

PUMPS

09/12/2014

Juniata Physics Seminar

Tensor Structure Functions – JLab

Measuring b_1 will give insight into

- Exotic effects in tensor-polarized systems
- OAM and spin crisis
- Pionic effects
- Polarization of the quark sea
- Hidden color from 6-quark configuration

Approved JLab Experiment E12-13-011 Spokespersons: K. Slifer, E. Long, D. Keller, P. Solvignon, J.P. Chen, O.R. Aramayo, N. Kalantarians

09/12/2014

Juniata Physics Seminar

Repeat same experiment, only look at A_{zz} in the quasi-elastic region

Can give insight to short range deuteron structure

09/12/2014

Repeat same experiment, only look at A_{zz} in the quasi-elastic region

Can give insight to short range correlations

09/12/2014

Juniata Physics Seminar

09/12/2014

Juniata Physics Seminar

09/12/2014

Juniata Physics Seminar

Thank you

09/12/2014

Juniata Physics Seminar