E08-005: A_v^0 in Quasi-Elastic ³He(*e,e'n*) Scattering

Elena Long

Hall A Collaboration Meeting

December 17th, 2013

University of New Hampshire

12/17/2013

Hall A Collaboration Meeting

Today's Discussion

- Brief background of the physics
- Experimental method
- Summary of past analysis
- Summary of recent analysis
- Results

³He(*e,e'n*) Complications

- Since other nucleons exist in the 3He nucleus, they cause secondary effects that must be taken into account
- These effects, particularly FSIs, cause A_y^0 to be non-zero

Final State
 Interactions
 (FSI)

Meson
 Exchange
 Currents
 (MEC)

Current Measurements

 $\circ A_v^0$ data will test state-of-the-art calculations at high Q^2

- Neutron physics extracted from ³He (such as EM form factors) must correctly predict this asymmetry
- Any non-zero result indicates higher order effects

Historical Data and Models

 Faddeev calculations by the Bochum group^[4] correctly predicted FSI, where other groups expected a much lower value

^[1] H.R. Poolman, Ph.D. Thesis, Vrije Universiteit, 1999.
^[2] J. Bermuth *et al.*, Phys. Lett. **B**564, 199 (2003).
^[3] J.M. Laget, Phys. Lett. **B**273, 367 (1991).
^[4] J. Golak *et al.*, Phys. Rev. **C**65, 044002 (2002).

12/17/2013

6

The Measurements

The Measurements ³He(*e,e'n*) Channel

The Measurements Polarized ³He Target

The Measurements Polarized ³He Target

- Optically pumped Rb and K vapor used to polarized ³He via spin exchange (SEOP)
- NMR and EPR used to measure P_t
- N present in cell to absorb photons from spin-exchange

 $5.3 \pm 0.8\%$ at $Q^2 = 0.1$ $D_N = 2.4 \pm 0.3\%$ at $Q^2 = 0.5$ $2.8 \pm 1.2\%$ at $Q^2 = 1.0$

- Achieved P_t of 51.4 \pm 0.4 \pm 2.8 %
- Details in Y. Zhang, Ph.D. Thesis, Rutgers, 2013

The Measurements Right HRS

The Measurements

Right HRS

- Detected scattered electrons from ³He(*e*,*e'n*) and ³He(*e*,*e'*)
- Provided trigger for HAND
- Detector package included VDCs, trigger scintillators, gas Cherenkov, and leadglass calorimeters

The Measurements Right HRS

- Detected scattered electrons from ³He(*e*,*e'n*) and ³He(*e*,*e'*)
- Provided trigger for HAND
- Detector package included VDCs, trigger scintillators, gas Cherenkov, and leadglass calorimeters

Right HRS

 Details in G. Jin, Ph.D. Thesis, University of Virginia, 2011

The **Measurements**

Right HRS

- Electron ID
- Details in E. Long, Ph.D.
 Thesis, Kent State University, 2012 (arXiv:1209.2739)

Preshower/Shower

Right HRS

- Electron ID
- Details in E. Long, Ph.D.
 Thesis, Kent State University, 2012 (arXiv:1209.2739)

- ³He(*e,e'*) Single-Spin
 Asymmetry
- Comparison with Y. Zhang

- ³He(*e,e'*) Single-Spin
 Asymmetry
- Comparison with Y. Zhang

Hall A Collaboration MeetingElena Long <ellie@jlab.org>19

Measurements

Right HRS

- ³He(*e,e'*) Single-Spin Asymmetry
- Comparison with Y. Zhang

³He(e,e')

The Measurements

Hall A Neutron Detector (HAND)

The Measurements

Hall A Neutron **Detector (HAND)**

The Measurements

Hall A Neutron Detector (HAND)

- Plastic scintillator array
- Detected neutrons from ³He(*e,e'n*) in coincidence with the RHRS
- Details in E. Long, Ph.D. Thesis, Kent State University, 2012 (arXiv:1209.2739)

The Measurements

Hall A Neutron Detector (HAND)

- Plastic scintillator array
- Detected neutrons from ³He(*e,e'n*) in coincidence with the RHRS
- Details in E. Long, Ph.D.
 Thesis, Kent State University, 2012 (arXiv:1209.2739)

p

The Measurements

Hall A Neutron **Detector (HAND)**

- Neutrons detected using veto method
- Details in E. Long, Ph.D. Thesis, Kent State University, 2012 (arXiv:1209.2739)

n

The Measurements

Hall A Neutron **Detector (HAND)**

- Neutrons detected using veto method
- Details in E. Long, Ph.D. Thesis, Kent State University, 2012 (arXiv:1209.2739)

n

The Measurements

Hall A Neutron Detector (HAND)

- Neutrons detected using veto method
- Details in E. Long, Ph.D.
 Thesis, Kent State University, 2012 (arXiv:1209.2739)

The Measurements

Hall A Neutron Detector (HAND)

- Neutrons detected using veto method
- Details in E. Long, Ph.D.
 Thesis, Kent State University, 2012 (arXiv:1209.2739)

The Measurements

Hall A Neutron Detector (HAND)

 Time-of-Flight background subtracted from the neutron peak $\times 10^{3}$

 Details in E. Long, Ph.D.
 Thesis, Kent State University, 2012 (arXiv:1209.2739)

$Q^2 = 0.1$ ToF Background

The

Measurements

Hall A Neutron Detector (HAND)

- Proton contamination
- Details in E. Long, Ph.D. Thesis,
 Kent State University, 2012 (arXiv:1209.2739)

Proton Contamination

- To find misidentified protons, apply neutron cuts to H(e,e'p)
 - $r_{mis\ id} = \frac{p_{\rm H}\ mis\ id}{Tot_{\rm H}\ meas}$
- Find ratio of protons:neutrons from ³He(e,e'n) and ³He(e,e'p)

•
$$\sigma = \sigma_{Mott} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right)$$

•
$$r_{p:n} = \frac{2\sigma_p}{\sigma_n} = 7.6:1 \text{ at } Q^2 = 0.1 (\text{GeV}/c)^2$$

5.3:1 at $Q^2 = 0.5 (\text{GeV}/c)^2$
5.3:1 at $Q^2 = 1.0 (\text{GeV}/c)^2$

The

Measurements

Hall A Neutron Detector (HAND)

- Proton contamination
- Details in E. Long, Ph.D. Thesis, Kent State University, 2012 (arXiv:1209.2739)

Proton Contamination

- Using $r_{p:n}$ and total measured He events in HRS, find expected number of protons and neutrons thrown at HAND
 - $Tot_{He\ meas} = p_{exp} + n_{exp}$

•
$$n_{exp} = \frac{Tot_{He meas}}{1+r_{p:n}} \longrightarrow$$
 Use to find efficiency, $E_{HAND} = \frac{n_{meas}}{n_{exp}}$

•
$$p_{exp} = n_{exp} r_{p:n}$$

- Include $r_{mis\ id}$ to estimate number of misidentified protons in 3He
 - $p_{\text{He mis id}} = p_{exp} r_{mis id}$
- Calculate proton dilution factor

• $D_p = 1 - \frac{p_{\text{He mis id}}}{n_{exp}}$

Version 1.2 as of December 12, 2013 Primary author: Elena A. Long, ellie@jlab.org To be submitted to PRL. Comment to Hall A Collaboration by the Quasi-Elastic Family Collaboration HALL A INTERNAL DOCUMENT - NOT FOR PUBLIC DISTRIBUTION

A measurement of the single-spin asymmetry A_y^0 in quasi-elastic ${}^{3}\text{He}^{\uparrow}(e, e'n)$ scattering at 0.1 GeV/ $c^2 > Q^2 > 1.0$ GeV/ c^2 2

E. Long^{1,*} Y.-W. Zhang² M. Mihovilovic³ G. Jin⁴ K. Allada⁵ B. Anderson⁶ J.R.M. Annand⁷ T. Averett⁸ 3 W. Boeglin,⁹ P. Bradshaw,⁸ A. Camsonne,⁵ M. Canan,¹⁰ G. Cates,⁴ C. Chen,¹¹ J.P. Chen,⁵ E. Chudakov,⁵ 4 R. De Leo,¹² X. Deng,⁴ A. Deur,⁵ C. Dutta,¹³ L. El Fassi,² D. Flay,¹⁴ S. Frullani,¹⁵ F. Garibaldi,¹⁵ S. Gilad,¹⁶ 5 R. Gilman^{5, 2} O. Glamazdin¹⁷ S. Golge¹⁰ J. Gomez⁵ O. Hansen⁵ D. Higinbotham⁵ T. Holmstrom¹⁸ 6 J. Huang,^{16,19} H. Ibrahim,²⁰ C.W. de Jager,⁵ E. Jensen,²¹ X. Jiang,¹⁹ M. Jones,⁵ H. Kang,²² J. Katich,⁸ 7 H.P. Khanal,⁹ P. King,²³ W. Korsch,¹³ J. LeRose,⁵ R. Lindgren,⁴ H.-J. Lu,²⁴ W. Luo,²⁵ P. Markowitz,⁹ 8 M. Meziane,⁸ R. Michaels,⁵ B. Moffit,⁵ P. Monaghan,¹¹ N. Muangma,¹⁶ S. Nanda,⁵ B.E. Norum,⁴ K. Pan,¹⁶ 9 D. Parno²⁶, E. Piasetzky²⁷, M. Posik¹⁴, V. Punjabi²⁸, A.J.R. Puckett^{16, 19}, X. Qian²⁹, Y. Qiang⁵, X. Qui²⁵, 10 S. Riordan,⁴ A. Saha,⁵ B. Sawatzky,⁵ M. Shabestari,⁴ A. Shahinyan,³⁰ B. Shoenrock,³¹ S. Sirca,^{32,3} J. St. John,¹⁸ 11 R. Subedi,³³ V. Sulkosky,¹⁶ W.A. Tobias,⁴ W. Tireman,³¹ G.M. Urciuoli,¹⁵ D. Wang,⁴ K. Wang,⁴ Y. Wang,³⁴ 12 J. Watson⁵, B. Wojtsekhowski⁵, Z. Ye,¹¹ X. Zhan¹⁶, Y. Zhan²⁵, X. Zheng⁴, B. Zhao⁸, and L. Zhu¹¹ 13

Results

(The Hall A Collaboration)

Run-by-run A_v^0 $\delta \overline{A_y^0}' = \varepsilon_{stat} + \varepsilon_{sys}'$ $S = \left[\frac{\chi^2}{dof}\right]^{1/2}$ $\delta A_{\nu}^{0} = S \delta A_{\nu}^{0'}$ $\varepsilon_{sys} = S\varepsilon_{sys}' + (S - 1)\varepsilon_{stat}$ $\delta A_y^0 = \varepsilon_{stat} + \varepsilon_{sys}$ 12/17/2013

Hall A Collaboration MeetingElena Long <ellie@jlab.org>33

Run-by-run A_v^0 $\delta \overline{A_y^0}' = \overline{\varepsilon_{stat}} + \varepsilon_{sys}'$ $S = \left[\frac{\chi^2}{dof}\right]^{1/2}$ $\delta A_{y}^{0} = S \delta A_{y}^{0'}$ $\varepsilon_{sys} = S\varepsilon_{sys}' + (S - 1)\varepsilon_{stat}$ $\delta A_y^0 = \varepsilon_{stat} + \varepsilon_{sys}$ 12/17/2013

Hall A Collaboration Meeting Elena Long <ellie@jlab.org>

34

• Systematic Uncertainties

$\langle Q^2 \rangle \; (\text{GeV}/c)^2$	0.13	0.46	0.95
$\epsilon_{ m eff}$	0.173	0.0168	60.8×10^{-4}
ϵ_t	0.0339	0.0086	3.21×10^{-4}
$\epsilon_{ m N_2}$	0.0054	0.00054	0.848×10^{-4}
$\epsilon_{ m p}$	0.0015	0.00012	0.0067×10^{-4}
ϵ_{sys}	0.176	0.0188	60.9×10^{-4}

• A_{y}^{0} vs. v

• A_y^0 vs. Q^2 • Linear

A_y⁰ vs. Q² • Logarithmic

E. Long, Y.-W. Zhang, M. Mihovilovic, G. Jin, K. Allada, B. Anderson, J.R.M. Annand, T. Averett, W. Boeglin, P. Bradshaw, A. Camsonne, M. Canan, G. Cates, C. Chen, J.P. Chen, E. Chudakov, R. De Leo, X. Deng, A. Deur, C. Dutta, L. El Fassi, D. Flay, S. Frullani, F. Garibaldi, S. Gilad, R. Gilman, O. Glamazdin, S. Golge, J. Gomez, O. Hansen, D. Higinbotham, T. Holmstrom, J. Huang, H. Ibrahim, C.W. de Jager, E. Jensen, X. Jiang, M. Jones, H. Kang, J. Katich, H.P. Khanal, P. King, W. Korsch, J. LeRose, R. Lindgren, H.-J. Lu, W. Luo, P. Markowitz, M. Meziane, R. Michaels, B. Moffit, P. Monaghan, N. Muangma, S. Nanda, B.E. Norum, K. Pan, D. Parno, E. Piasetzky, M. Posik, V. Punjabi, A.J.R. Puckett, X. Qian, Y. Qiang, X. Qui, S. Riordan, A. Saha, B. Sawatzky, M. Shabestari, A. Shahinyan, B. Shoenrock, S. Sirca, J. St. John. R. Subedi, V. Sulkosky, W.A. Tobias, W. Tireman, G.M. Urciuoli, D. Wang, K. Wang, Y. Wang, J. Watson, B. Wojtsekhowski, Z. Ye, X. Zhan, Y. Zhang, X. Zheng, B. Zhao, and L. Zhu The Hall A Collaboration

Thank you!

Graduate Students

Spokespersons

Run Coordinators

39

Advisors

12/17/2013

Hall A Collaboration Meeting

End

12/17/2013

Hall A Collaboration Meeting

Backup Slides

12/17/2013

Hall A Collaboration Meeting

The Measurements Right HRS

Electron ID

Reaction Point in z $\times 10^3$ Counts Target Cell Window 350 (Upstream) $^{3}\mathrm{He}$ 300 Target Cell Window 250(Downstream) 200 150100 50 0⊑ -0.3 -0.2 0.2-0.1 0 0.10.3 Reaction Point in z (m)

^{1]}G. Jin, Ph.D. Thesis, University of Virginia, 2011.

The **Heating** Measurements Right HRS

- Electron ID
- Details in E. Long, Ph.D. Thesis, Kent State University, 2012 (arXiv:1209.2739)

Right HRS

Electron ID

^{1]}G. Jin, Ph.D. Thesis, University of Virginia, 2011.

12/17/2013

Preshower/Shower

• Electron ID

^{1]}G. Jin, Ph.D. Thesis, University of Virginia, 2011.

12/17/2013

Theta/Phi

Hall A Collaboration MeetingElena Long <ellie@jlab.org>45

Simple ³He(*e,e'n*) - PWIA

- Ideally, the only interaction that occurs is when the incoming electron hits the neutron
- This model is called Plane Wave Impulse Approximation (PWIA)
- $(E', \overline{k'})$ (E, \vec{k}) (ν, \overline{q}) $(E_n, \overrightarrow{p_n})$ Residual(Undetected)Nucleons (E_R, \vec{p}_R) $(m_{^3\mathrm{He}},\!0)$
- PWIA predicts the single-spin target asymmetry, A⁰, to be exactly zero

The

Measurements

Hall A Neutron Detector (HAND)

- Proton contamination
- Details in E. Long, Ph.D. Thesis, Kent State University, 2012 (arXiv:1209.2739)

- To find misidentified protons, apply neutron cuts to H(e,e'p)
 r_{mis id} = <sup>p<sub>H mis id</sup>/<sub>Tot_{H meas}
 </sup></sub></sub>
- Find ratio of protons:neutrons from ³He(e,e'n) and ³He(*e*,*e'p*) • $\sigma = \sigma_{Mott} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right)$

• $r_{p:n} = \frac{2\sigma_p}{\sigma_n} = 7.6:1 \text{ at } Q^2 = 0.1 (\text{GeV}/c)^2$ 5.3:1 at $Q^2 = 0.5 (\text{GeV}/c)^2$ 5.3:1 at $Q^2 = 1.0 (\text{GeV}/c)^2$

• Using $r_{p:n}$ and total measured He events in HRS, find expected number of protons and neutrons thrown at HAND

•
$$Tot_{He\ meas} = p_{exp} + n_{exp}$$

$$1.1 \pm 0.1\%$$
 a

- $n_{exp} = \frac{Tot_{He meas}}{1+r_{p:n}}$ \longrightarrow Use to find efficiency, $E_{HAND} = \frac{n_{meas}}{n_{exp}} = 7.0 \pm 0.7\%$ a • $p_{exp} = n_{exp}r_{p:n}$ $32.2 \pm 3.2\%$ a
- Include $r_{mis\ id}$ to estimate number of misidentified protons in 3He
 - $p_{\text{He mis id}} = p_{exp} r_{mis id}$
- Use to calculate proton dilution factor

$$D_p = 1 - \frac{p_{\text{He misid}}}{n_{exp}}$$

The Measurements

Reference Slide

12/17/2013

 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

- A_y^0 vs. Q^2
 - Linear and Logarithmic

